
3D graphics rendering using a
polygon-voxel-hybrid approach

Diploma Thesis
by

Daniel Gritzner
born in
Worms

submitted to
Lehrstuhl für Praktische Informatik IV

Prof. Dr.-Ing. W. Effelsberg
Fakultät für Mathematik und Informatik

University of Mannheim

March 2014

Supervisor: Philipp Schaber

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit ohne Hilfe Dritter und nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mannheim, den 17.03.2014 Daniel Gritzner

Contents

List of Figures iii

List of Tables iv

1. Introduction 1
1.1. Motivation . 1
1.2. Scope . 2

2. Rasterization 3
2.1. Basic approach . 4
2.2. Hardware acceleration . 13
2.3. Advanced techniques . 14
2.4. Recap . 20

3. Ray tracing 21
3.1. Basic approach . 21
3.2. Hardware acceleration . 25
3.3. Advanced techniques . 25
3.4. Recap . 28

4. Related work 29
4.1. Rasterization . 29
4.2. Ray tracing . 30
4.3. Hybrid approaches . 31

5. Hybrid rendering 33
5.1. Goals . 33
5.2. Combining the two techniques . 35
5.3. Rasterization . 37
5.4. Voxel ray tracing . 38
5.5. Generating voxel octrees . 43
5.6. Recap . 46

6. Implementation 47
6.1. Tools and file formats . 47
6.2. The hybrid renderer . 50
6.3. Floating-point precision . 55

6.4. Recap . 57

7. Evaluation 58
7.1. Test setup . 58
7.2. Polygon meshes . 58
7.3. Sparse voxel octrees . 60
7.4. Rendering . 63
7.5. Recap . 67

8. Conclusion 71
8.1. Summary . 71
8.2. Suggestions for future works . 72

Appendices 73

A. Projective transformations 74

B. Additional screenshots 77

Bibliography 80

List of Figures

1.1. Progress of almost 20 years in 3D computer graphics 2

2.1. Triangles and vertex order dependency . 4
2.2. Rasterizing (sampling) triangles . 5
2.3. Viewing frustrum . 8
2.4. Texture-mapped soda can . 9
2.5. Texture filtering . 10
2.6. Mip-map pyramid . 11
2.7. Anisotropic filtering . 12
2.8. Super-sampling . 18
2.9. Coverage . 19

3.1. Ray tracing pseudo-code . 22
3.2. Ray tracing . 23
3.3. Octree and quadtree . 26
3.4. Reflection of a ray . 27

5.1. MD5 mesh with skeleton for animation . 38
5.2. Children order during tree traversal . 40
5.3. Containment and intersection with regard to squares 41
5.4. Motion induced by moving the camera . 43

6.1. Example meshes . 49
6.2. Depth visualizer . 53
6.3. GUI . 54
6.4. Hole in an object . 56

7.1. Time spent on various steps when creating SVO 61
7.2. Early depth test on/off graph . 66
7.3. Screenshots 1 . 68
7.4. Screenshots 2 . 69
7.5. Close-up screenshot . 70

B.1. Screenshot A1 . 77
B.2. Screenshot A2 . 78
B.3. Screenshot A3 . 78
B.4. Screenshot A4 . 79

iii

List of Tables

5.1. Depth values after transformation . 36

7.1. Test systems . 59
7.2. Polygon mesh properties . 59
7.3. Total time required to build the SVOs . 62
7.4. Performance: CPU vs. GPU . 64
7.5. Performance: level of detail . 65
7.6. Performance: scene and rendering order 66

iv

1. Introduction

1.1. Motivation

Virtual 3D environments have become a common part of our culture. From planning
and previewing the interior of a house to simulations of entire worlds in video games
virtual environments are used for a wide variety of applications. In particular the video
games industry, which makes heavy use of those 3D environments, has grown into one
of the largest entertainment industries in recent years.

Just as the applications are very varried the demands made on 3D virtual environments
are very varried as well. They range from “highest quality at acceptable rendering times
on expensive computer clusters”, e.g. movies, to “best possible quality at very fast
rendering times on cheap hardware”, e.g. games on mobile platforms. Several different
approaches for creating and rendering these 3D environments have been proposed in
the past few decades. Nowadays the two most common ones are rasterization and ray
tracing. Both techniques have their own advantages and disadvantages and they both
scale reasonably well, e.g. by changing the number of primitives or the resolution of the
resulting image.

The processing power of modern computers has steadily increased and so has the image
quality of virtual 3D environments. This can be easily seen in figure 1.1. But not only
has processing power and quality kept increasing, the demands put on 3D environments
are steadily increasing as well. Consumers keep demanding higher resolutions and more
realism. Even though the advancements made in the past 20 years are quite significant,
there never has been a time in which content developers have not been limited by the
processing power of the hardware. This is especially true for real-time content like video
games. This in turn means that there is demand for algorithms which can produce
higher quality results in the same processing time or produce the same quality results
in less processing time.

Rasterizing animated polygons can be done quite fast but certain effects like lighting
or volumetric effects, e.g. fire and smoke, can be hard to implement and they can quickly
slow down the renderer. Ray tracing, or ray casting, allows for an easier implementation
of those effects because implementing ray reflection or “picking up information like smoke
density along the way” is quite straight forward. But ray tracing usually requires more
processing time. Especially when considering that fast ray tracing renderers rely on pre-
computed data structures which make animations difficult or at least very expensive.

A hybrid approach which combines rasterization and ray tracing in order to gain the
advantages of both may satisfy the aforementioned increasing demand of consumers
and content creators. The idea is to render each object of a scene with a different
technique depending on which one is more suited. For example the static parts of a

1

(a) Doom (1993) (b) Rage (2011)

Figure 1.1.: Progress of almost 20 years in 3D computer graphics. Both games are first
person shooters developed by id Software. Doom is actually just pseudo-3D.
Image sources: Wikipedia.1 2

scene could be rendered using ray tracing with realistic lighting and volumetric effects
like fog while all the dynamic, animated objects like characters are rendered into the ray
traced image using rasterization. The difficulty lies within in the proper identification
of which renderer to choose for which object and how to combine them. In the given
example the ray tracing renderer would have to output a depth map in the proper value
range for the rasterization renderer to use. Such a depth map is usually not necessary
when using ray tracing.

The goal of this thesis to solve those issues and propose a renderer which combines
rasterization and ray tracing in a way that improves upon renderers only relying on either
technique. The final hybrid renderer should still be capable of real-time performance
under modern circumstances. This means on modern hardware when rendering images
of high quality, e.g. through the use of realistic lighting, the output resolution should be
at least 720p and the framerate should not drop below 30 FPS.

1.2. Scope

The scope of this thesis is to explain the state-of-the-art in rasterization and ray tracing
followed by a proposal of a new hybrid renderer and an evaluation of said renderer.
The thesis is structured as follows. The first two chapters after the introduction are
dedicated to rasterization and ray tracing. Each of those chapters explains the state-
of-the-art of one these rendering techniques. The next chapters gives an overview of
the related work done in the field of 3D computer graphics. This chapter is followed by
three chapters discussing the newly proposed hybrid renderer. The first of those chapters
discusses the theory behind said renderer while the next two chapters are about non-
obvious implementation details and an evaluation of the performance and quality of the
renderer. The thesis concludes with a short summary and suggestions for future work.

1http://en.wikipedia.org/wiki/Doom_(video_game)
2http://en.wikipedia.org/wiki/Rage_(video_game)

2

http://en.wikipedia.org/wiki/Doom_(video_game)
http://en.wikipedia.org/wiki/Rage_(video_game)

2. Rasterization

Before a new hybrid renderer combining rasterization and ray tracing can be discussed
an overview over the two techniques is necessary. This chapter gives an introduction to
3D computer graphics and in particular to rasterization.

Computer graphics is a field of computer science that concerns itself with efficient al-
gorithms and data structures to represent and create images or sequences of images. The
methods used for three-dimensional objects and environments are especially important
for this thesis. Rasterization is one such method. At its core it is a form of sampling of
a continuous space.

It is common in computer graphics to use models which are actually wrong but which
allow for efficient implementations while still delivering high image quality. The per-
ception of light is one thing which is often modeled incorrectly for performance reasons.
Humans visually perceive the world through light that travels into their eyes after being
reflected off the environment. Cameras work the same way. A physically correct way
to render a virtual 3D scene would be to simulate all the rays of light leaving every
light sources until all rays have either been absorbed completely or left the scene. A
virtual camera or eye could be placed into the scene and the rays hitting this object
could be used to generate the final image. But doing so would be very computationally
expensive. A large amount of rays would have to be simulated with only a small fraction
ever contributing to the final image.

Computer graphics uses a model which might not be physically correct but which is a
lot easier to compute. Basically a model of “vision rays” is used. Those rays do not start
at light sources and eventually end in the virtual eye. Instead they start at the virtual
eye and eventually end in the environment or maybe even a light source, depending on
the complexity of the renderer. The starting point and direction of each ray defines
which pixel of the final image it corresponds to while the end point of each ray, and
sometimes its path as well, define the color of said pixel. This approach ensures that
only rays which contribute to the final image are ever taking into consideration. This
does not mean that all the rays which may contribute to the image are always accounted
for. Some algorithms may terminate too early for performance reasons.

The remainder of this chapter discusses rasterization, which uses the aforementioned
“vision ray” model implicitly, in more detail. At first the basics of how 3D objects
are represented and drawn onto the screen are introduced. This is then followed by
explanations of more advanced techniques which improve the image quality, e.g. how
good looking animations can be implemented or how sampling artifacts (aliasing) can
be reduced. The chapter concludes with a brief recap of rasterization to highlight the
most important parts and how they work in combination with each other.

The topics discussed in this chapter are mostly standard text book knowledge. Basi-

3

cally any book with “Computer Graphics” in its title can be used for further reading. A
quick look into the table of contents of a book should quickly reveal if it actually deals
with rasterization and in how much detail it does. Three good examples are [23], [9]
and [21]. There are many more good books on computer graphics. Which one is the
best depends on the reader’s interests and preferences. Also books about video game
programming often contain a lot of useful information on computer graphics as graphics
are an important part of modern video games.

2.1. Basic approach

As previously mentioned rasterization is a form of sampling. A set of surfaces is used
to define three-dimensional objects. Rasterization calculates how each surface looks
from the point of view of a virtual eye or camera and then samples this transformed
representation of each surface.

2.1.1. Polygons

The most common way to define a 3D surface, which shall be used in a rasterizer, is to
use polygons. In particular triangles are used. They are the most simple, finite surface
in a 3D space. This makes them easy to understand and so easy to work with both from
the point of view of a user creating an object and from the point of view of a programmer
implementing a rasterizer. Triangles are also the only type of surface supported by early
3D graphics acceleration hardware. This probably has contributed to their popularity
in 3D modeling.

The most basic and common way to define a single triangle is to define the three
vertices which are the corners of the triangle. A vertex is simply a point in 3D space,
i.e. a three-dimensional vector. The order in which the vertices are defined is often used
to distinguish between the two sides of a triangle.

A

BC

(a) Order: A,B,C

A

BC

(b) Order: A,C,B

Figure 2.1.: Two triangles defined by the same vertices A, B and C but using a different
order of vertices. Using the expression (second − first) × (third − first) to
calculate the normals for each triangle results in normals facing in opposite
directions. This would result in the normal (B −A)× (C −A) for the first
triangle and (C − A) × (B − A) = −((B − A) × (C − A)) for the second
triangle.

4

There are two possible normals which can be calculated for each triangle. These two
normals define the same line but point into opposite directions. The order in which the
vertices are specified can be used to decide on one of the normals as the “correct” one.
The normal’s direction can be used to decide which side of a triangle is the so-called
front side and which one is the back side. A common convention is to say that if the
normal points roughly toward the virtual eye the front side of the triangle is facing the
eye. Figure 2.1 shows how normals may be calculated and how the order of the vertices
matters for this.

2.1.2. Rasterization

It has already been mentioned that rasterization is a form of sampling. This sampling
is done on triangles which have already been transformed (e.g. translated and rotated)
in such a way that their vertices are in the coordinate system of the virtual camera. In
this coordinate system the Z axis points into the direction the camera is looking. The X
axis corresponds to the horizontal axis of the output image and the Y axis corresponds
to its vertical axis. A rectangular subsection of the XY plane, e.g. [−1, 1] × [−1, 1], is
sampled.

The sampling rate depends on the resolution of the desired final image and is of course
finite. Each sample point corresponds to exactly one pixel of the output image and the
sample points have the same equidistant spacing as the pixels of the screen which is
usually the final render target. Often the sample points are chosen such that they
represent the center of a pixel. Figure 2.2 illustrates this.

y

z

x

(a) A triangle viewed in 3D. The Z value
is the same for all vertices.

x

y

(b) Sampling of a triangle. Each purple
circle is a sampling point and corre-
sponds to exactly one pixel on the
screen.

Figure 2.2.: The coordinate system used for rasterizing (sampling) triangles.

The triangles and the camera are defined using floating point numbers which are
conceptually real numbers. This means that the exact subpixel position of the boundaries
of each surface are arbitrary and so the “signal frequency” has no upper bound except
for limitations imposed by the precision of floating point numbers. As a result the actual
sampling rate is often below the minimum sampling rate for error-free reconstruction as

5

defined by the Nyquist-Shannon sampling theorem. The artifacts this causes and how
they can be dealt with is explained later in this chapter.

The actual sampling is implemented using a depth map. This is an image of the same
resolution as the output image. But instead of color information depth information is
stored in each pixel. Initially the depth is set to infinity for each pixel. The Z (depth)
value of the image plane is also required for the algorithm. It works as follows:

1. initialize depth map

2. for each triangle:

a) compute minimal bounding box of triangle

b) for each sample point (X,Y) in the bounding box:

i. test if it is inside the triangle, if it is not continue with next sample point

ii. calculate the Z value of the triangle at (X,Y) and perform the Z test:

• if the Z value is lower than the Z value of the image plane continue
with the next sample point

• if the Z value is larger than the Z value stored in the depth map for
(X,Y) continue with the next sample point

iii. store the Z value in the depth map in the pixel corresponding to (X,Y)

iv. calculate the color of the triangle at (X,Y) and store it in the appropriate
pixel in the output image

This algorithm ensures that for each pixel of the output image the front-most triangle,
which is still behind the image plane from the point of view of the camera, is chosen.
The properties of the triangle at that point determine the color of the pixel. The details
of how that is done is explained in later sections of this chapter.

This algorithm calculates the orthogonal projection of all triangles onto the image
plane with pixel-accurate depth checks so that overlapping triangles render correctly. It
is also an implicit implementation of the “vision ray” model explained in the introduction
of this chapter. A direct implementation would be to calculate a ray for each sampling
whose direction is parallel to the Z axis. If the same Z tests are used to decide which
triangle to choose to calculate the color, the resulting output image would be exactly
the same as the one produced by the algorithm above.

2.1.3. Projective Geometry

The rasterization algorithm requires all the triangles to be in a specific coordinate system,
namely one in which everything that is visible is by the virtual camera ends up inside
a cube. Rasterization uses the projective geometry and its properties to transform
triangles to said coordinate system.

Projective geometry is a subfield of geometry and so a subfield of mathematics. It
concerns itself with the perspectively correct “drawing” of n-dimensional objects viewed

6

from an (n− 1)-dimensional space, e.g. the correct drawing of the 3D world as humans
perceive it onto a 2D canvas.

While this is a vast field only some concepts are important for understanding rasteri-
zation. In particular homogeneous coordinates are important. When tracing a line from
an eye or camera into a 3D space every point on said line will project onto the same 2D
point in the image plane of the camera. Homogeneous coordinates are used to account
for the phenomenon that an infinite number of points in the higher dimensional space
represent the same point in the lower dimensional space. This is done by simply adding
an additional dimension to each vector. For example in homogeneous coordinates the
point (x′, y′) is represented by all vectors (x, y, z) for which x′ = x

z and y′ = y
z is true.

As a consequence all interesting transformations like translations or rotations can be
expressed by matrices. For example 1 0 tx

0 1 ty
0 0 1

 ·
 x

y
1

is a translation of the point (x, y) in homogeneous coordinates. This means that a
rasterization-based renderer only needs to implement matrix-vector multiplication to
cover all required transformations. Also an implementation of a matrix-matrix multi-
plication can be used the implement arbitrary combinations of transformations. When
multiplying a matrix representing transformation A with a matrix representing trans-
formation B the resulting matrix will represent a transformation that first applies B
to a vector and then applies A to the result. Modern rasterizers, especially hardware
accelerated implementations, use homogeneous coordinates for the 3D data representing
objects and the environment. That means the vertices representing a triangle are actu-
ally represented by 4D vectors and 4× 4 matrices are used to represent transformations
on said vertices.

As initially mentioned the rasterization algorithms requires all triangles to be in a
specific coordinate system or space. In total there are four relevant spaces:

• object space

• world space

• camera space

• screen space

Every object in a 3D scene is defined within its own coordinate system. This is a
rather obvious requirement because each object is created separately and requires some
coordinate system for storage of the vertices.

World space is the space in which all objects are placed. Transformations are used
to calculate each object’s position and orientation in world space. This implementation
also allows to use the same object multiple times, e.g. to simulate a crowd of people,
with low overhead. The object’s vertices do not have to be stored multiples. Only the
transformation parameters need to be stored per instance.

7

While world space already defines the scene properly it is not suited for direct rendering
using rasterization. World space vertices are further transformed into the camera space.
Translations and rotations are used so that Z axis becomes the direction the camera
is looking in. Camera space is almost sufficient for the rasterization algorithm. The
remaining issue is that every visible object is inside a frustrum, in particular a truncated
pyramid as shown in figure 2.3. This means an orthogonal projection is not sufficient
to account for all perspective-related phenomena, e.g. objects appear to get smaller as
they move away from the camera.

Figure 2.3.: A viewing frustrum with three different objects in it.

One last transformation is thus required namely a transformation that transform a
frustrum into a cube. The resulting space after applying this transformation is called
screen space. In this space the rasterization algorithm as described in the previous
subsection can be used. The resulting image will look natural. The transformation from
camera to screen space is also used to account for parameters like the field of view (FOV)
(how much of the scene is visible) or to account for the aspect ratio of the screen that
is used for display. When calculating the matrix representing the transformation the
frustrum is set up such that it has the desired properties.

On overview of the relevant transformations and their matrix form can be found in
the appendix.

2.1.4. Texture mapping

Rasterization uses the properties of triangles at the sampled points to determine the
color of the pixel corresponding to each sample point. This is done through two related
techniques namely texture mapping and shading. The former is used by the later as an
input in modern renderers.

While triangles defined by vertices are sufficient to describe surfaces in terms of size
and shape they do not define what the inside of a triangle actually looks like. This is done
via texture mapping. Additional coordinates, so called texture coordinates, are assigned

8

to each vertex. These coordinates specify a point in a 2D bitmap. When the rasterization
algorithm samples a point from a triangle the texture coordinates of its vertices are used
to interpolate the texture coordinates at the sample point. These coordinates are then
used to retrieve a value from the texture (2D bitmap) associated with the triangle.
Modern renderers allow the use of multiple textures to define different properties, e.g.
diffuse color (color of an object under “good” or usual lighting conditions) or normal (to
create the illusion of a more detailed model with little cost). An example of a wireframe
model (polygon edges without any surface information), a diffuse color texture and a
textured model is shown in figure 2.4.

(a) A diffuse color texture (b) A wireframe model (c) A textured soda can

Figure 2.4.: A soda can without and with a texture. Texture coordinates for each vertex
(intersections in b)) are used to define a mapping of the 2D bitmap in a)
to the model. The result is shown in c). This example has been taken from
chapter 20 “Textures and Texture Mapping” in [23].

Retrieving the information from a bitmap can be done in different ways depending on
the available processing power and desired image quality. These techniques are called
texture filters. Each filter returns a value for each input texture coordinates (u, v). It
reads a certain number of pixels from the textures depending on its complexity. u and
v are floating point numbers. Neither the coordinates specified at the vertices nor the
interpolated coordinates need to lie exactly on a pixel in the texture. They may actually
specify points in between pixels.

The most simple filter is the nearest neighbor filter. It simply retrieves the pixel that
is the closest to the texture coordinates. This usually creates a “blocky” look as the
square nature of the pixels in the bitmap becomes visible as the camera gets close to
objects. The more advanced bilinear filter interpolates between the four closest pixels
giving higher weights to the closer pixels. It is called bilinear filter because it uses a
linear interpolation horizontally and a linear interpolation vertically to calculate the
final color. This results in a smoother image. An example of these two filter techniques
is illustrated in figure 2.5.

Distracting visual artifacts may also occur if neighboring sample points during ras-
terization have texture coordinates that are too far apart. Information contained in the
texture may be completely skipped because the texture filter never reads it for any of the
rasterized points. To avoid this problem multiple resolutions are stored for each texture.
This is called mip-mapping. The resolution of a texture almost always is a power of
2, usually they are even square. To create the lower resolution textures the resolution

9

(u,v)

A B

C D

Figure 2.5.: Texture filtering. The black circles represent pixels in a 2D bitmap while
the cross represent the coordinates for which a sample is requested. Nearest
neighbor filtering would choose B as it is the closest pixel. Bilinear filtering
would interpolate between A, B, C and D with the highest weight for B
and the lowest weight for C.

is successively divided by 2 along each axis and the texture is downscaled to the new
resolution in each step. This creates a texture pyramid as shown in figure 2.6. When
using a nearest neighbor or a bilinear filter one image from the pyramid is chosen to use
as an input for the filter. The choice depends on the depth of the sample point so that
smaller textures are used for points that are further away.

The jump from one mip-mapping level (image in the pyramid) to the next creates a
visible artifact. A flat surface that extends toward the horizon, e.g. the ground in an
outdoor scene, shows a visible line at each jump of the mip-mapping level. The textures
appear to get suddenly less detailed. To avoid this artifact a trilinear filter can be used.
This filter is very similar to a bilinear filter. It chooses the two best fitting mip-map
levels, performs a bilinear look up in each of those and then linearly interpolates between
the results based on the depth. This creates a smooth transition between mip-map levels.

Surfaces whose normal is almost perpendicular to the viewing direction often appear
blurry along one axis when using bilinear or trilinear filtering. This happens when surface
has an aspect ratio in screen space that differs significantly from the aspect ratio of the
texture. For example if a surface appears very wide but not very high in screen space
yet the associated texture is square. This would result in a low resolution mip-map level
to be chosen due to the low height. But this texture has a low resolution along each
axis causing blur along the horizontal axis. One solution would be to create even more
copies of the texture at different resolutions. But this quickly becomes too expensive in
terms of memory cost. Instead anisotropic filters are used. They use even more than
the eight samples of a texture which are used by trilinear filters. The additional samples
are placed so that mip-map levels which are not direct neighbors are used so that a low
resolution is used for one axis while a high resolution is used for the other axis. This can
quickly cause memory bandwidth problems if too many samples are used. The issue is

10

Figure 2.6.: A mip-map pyarmid. Each level decreases the width and the height of the
texture by a factor of 1

2 . Using a texture of appropriate resolution avoids
artifacts caused by sampling points being spread out too far across the
texture. Image source: Wikimedia.3

illustrated in figure 2.7.

2.1.5. Shading

The second technique which is used to determine a pixel’s color is shading. The exact
meaning of the term “shading” has shifted somewhat in recent years. It used to solely
refer to techniques used to calculate how much light is reflected by a surface at a given
point. This amount of light was then used to modify the color information retrieved
from a texture to brighten or darken each pixel individually. Nowadays shading refers to
the more general process of determining a pixels color after sampling it from a triangle.
Shading is done through small programs that are executed for each pixel individually.
These programs have access to information like the interpolated texture coordinates and
use this to calculate a final color. The filtered texture reads as described in the previous
section are actually triggered by these shader programs. The filtered values read this
way are then used in the programs calculations. But shader programs do not have use
textures. They may also procedurally generate content on-the-fly.

The most common approaches to calculate the amount of light reflected use the normal

3http://commons.wikimedia.org/wiki/File:ISS_from_Atlantis_-_Sts101-714-016.jpg

11

http://commons.wikimedia.org/wiki/File:ISS_from_Atlantis_-_Sts101-714-016.jpg

Figure 2.7.: Two pictures of the same runway being viewed in Google Earth. The picture
on the left uses trilinear filtering and starts to lose details as lower mip-map
levels get chosen for the parts that are further away. The picture on the
right uses anisotropic filtering and so preserves more detail. Image source:
Wikipedia.4

of a surface at a given point and the direction a point light source is in. Often a simple
scalar product of these two vectors is used to approximate how much light is reflected
towards the camera at that point. The most simple implementation, flat shading, uses
the actual normal of each triangle and so calculates how much light is reflected for
all points of that triangle. This highlights the boundaries of triangles as the lighting
changes in sudden steps. More advanced techniques are Gouraud shading and Phong
shading. Gouraud shading uses normals for each vertex to calculate the amount of
reflected light at each vertex. Similarly to texture coordinates these amounts are then
used to interpolate amounts of light at each pixel. Phong shading uses a similar setup
but computes interpolated normals for each pixel and then calculates the amount of
reflected light for each pixel in this way. Each of those lighting models usually adds
a small constant light value to each pixel to account for the ambient light, e.g. the
light provided by the sun. Phong shading usually creates the best results especially
for models with a low number of polygons. But it is also the computationally most
expensive technique.

Modern rasterization renderers often combine several texture reads to compute the
color of a pixel. In addition to textures storing the diffuse color of a surface there are
two very common types of textures:

• light maps

• normal maps

4http://en.wikipedia.org/wiki/Anisotropic_filtering

12

http://en.wikipedia.org/wiki/Anisotropic_filtering

Light maps store the amount of light reflected at a given point. These are useful for
static scenes in which light can be pre-calculated once. Integrating this information
directly into the texture storing the color information often is not an option as diffuse
color textures may be reused. For example a brick wall may be textured using a small
brick texture that is repeated over and over again, yet the light hitting the may not
repeat in the same fashion. Normal maps store the normal at each point of a surface.
The advantage of normal maps is that they allow models to appear more detailed while
being less computationally expensive to use than models with more polygons. Small
details like scratches or scars can be produced by normal maps in a convincing way.

Shading programs are also used to procedurally compute content. For example when
rendering quiet bodies of water with only very shallow waves. Those bodies of water are
modeled as a single flat surface. Shader programs which implement some kind of wave
equation are used to calculate colors and normals for each sampled pixel. Procedurally
generated content requires only few parameters to be stored in memory.

2.2. Hardware acceleration

All modern computers for personal use have a so called Graphics Processing Unit (GPU).
This processor is designed to perform graphics-related computations quickly. Due to the
popularity of rasterization-based 3D graphics all modern GPUs have dedicated hardware
for those type of graphics. Hardware-based solutions for fast rasterization became pop-
ular in 1996 when 3dfx Interactive launched their Voodoo Graphics GPU. These GPUs
were available as Peripheral Component Interconnect (PCI) cards user could install in
their Personal Computer (PC). They had no support for 2D graphics which means they
had to be installed in addition to a regular GPU. The first 3D GPUs only supported a
subset of all the algorithms and techniques necessary for rasterization. For example the
Voodoo Graphics GPUs could perform texture mapping but transformations between
coordinate system had to be performed by the CPU in advance. In 1999 nVidia released
the GeForce 256 which featured support for the most common rasterization-related al-
gorithms. One feature it added was hardware-based transformations which previous
GPUs could not do. They still had one major drawback, namely the limitations on their
feature set. These GPUs offered a fixed set of features which programmers could only
enable or disable but not change. This drawback has been negated more and more by
the introduction of shaders. These are basically small programs written by software de-
velopers specifically for the GPU. These shaders are able to peform tasks like executing
transformation, triggering filtered texture look-ups or peforming shading. In 2005 the
first almost fully programmable consumer GPU was available in the Xbox 360. Only the
sampling of triangles is still performed by a piece of fixed function hardware while all
prior and all subsequent steps are performed by fully programmable shaders. The fol-
lowing year this GPU design had been adopted by GPUs available for PCs. Continuing
improvements in the area of shaders have even let to GPUs being used for non-graphics
tasks as the processing units used for executing shader code have become general purpose
processing units.

13

2.3. Advanced techniques

This section explains several advanced rasterization techniques which improve perfor-
mance or image quality. They range from using the basic algorithms in clever ways over
using general image processing algorithms to adding entirely new algorithms.

2.3.1. Optimizations

While the basic rasterization algorithms already ensure that only the visible polygons
contribute to the final image, always processing an entire scene, even parts that are
not visible, decreases performance. Transforming polygons which are not visible still
takes processing time that could be used more efficiently elsewhere. This is particularly
important on modern GPUs which have one large pool of processing units for all shader
code instead dedicated fixed hardware units for each step.

In order to decide which polygons are actually processed by the GPU spatial parti-
tioning can be used. This means nothing more than subdividing a scene into regions
and deciding which regions might contain visible content. Only those regions are then
processed further. There is a wide range of spatial partitioning techniques. A simple,
manual approach is to let content creators define “rooms” and define which rooms are
connected. Only the room in which the camera is located and all adjacent rooms are
processed. This of course requires the rooms to be build in such a way that the camera
can never look through an adjacent room into yet another room.

More advanced spatial partitioning techniques automatically subdivide scenes without
the need of content creators doing any manual work in addition to creating the scene
itself. They usually use a tree-based data structure which can be traversed quickly. Com-
mon techniques are Binary Space Partitioning (BSP) trees and Axis-aligned Bounding
Boxes (AABB) trees. The intersection of the view frustrum of the camera and the scene
can be quickly calculated using such trees. The resulting set of polygons is then processed
further. BSP trees are binary trees which use planes to subdivide a scene. Every inner
node of the tree contains a plane and pointers to the subtrees on either side of the plane.
The leaf nodes contain the actual content of the scene. AABB trees enclose everything
in a scene in minimal volume boxes whose sides are parallel the planes spanned by the
axis. This allows for fast testing whether any giving point is inside such a bounding box
or whether a volume intersects such a box. The leaf nodes may contain single primitives,
e.g. one single polygon, or small objects which do not need to be subdivided further like
the body parts (legs, feet, arms, hands, etc.) of a person. Moving up the tree towards
the root node are increasingly large bounding boxes enclosing more and more objects.
Each inner node has two children. One child is the subtree of everything contained in
the bounding box of the node while the other child is the subtree containing everything
outside of this box.

In the case of games or physics simulations spatial partitioning also helps with de-
tecting collisions of objects with the scene as queries whether an objects overlaps with
anything in the scene can be processed quickly.

Many 3D environments are designed to only contain objects which are either always

14

facing the camera or have a thickness that is strictly greater than 0. In such environments
the backside of a polygon can never be visible. This means that the normal of a polygon
and the viewing direction of the camera can be used to quickly decide whether said
polygon might be visible. This technique of terminating the processing of a polygon
early depending on the direction it is facing is called backface culling.

2.3.2. Animation

Animations are an important aspect of many applications using 3D environment. Very
few scenes do not have any moving content. And once there is at least one moving object
some kind of animation system is necessary. Animating objects which do not deform
during their animation is possible by simply updating the transformation parameters
which transform those objects from their object space to the world space. This allows
for those objects to move around and rotate freely.

Deforming objects, e.g. people moving their extremities, are harder to implement.
This is usually done through a keyframe-based system. All required poses for each such
object are stored together with how long it takes to get into the next pose. Each time
a frame is rendered the animation system interpolates between the previous pose and
the next one to determine what the object currently looks like. Different parts of an
object may be animated independently from each other. For example the upper body
of a soldier holding a gun may be animated independently from his legs to allow for the
soldier to aim freely even while moving in any direction.

Storing where each vertex is for each keyframe quickly creates a lot of data. To
reduce the amount of data needing to be stored skeletal animation is often used. Each
animated object has a skeleton. A skeleton simply is a set of connected bones. This can
be imagined like a graph with the edges being the bones and vertices of the graph being
the joints. These bones are often in a hierarchy affecting each other just like the hand
of a person moves around when said person moves her arm. The polygons making up
the object are assigned to the bones. Each polygon may be assigned to multiple bones
with varying weights. Instead of storing all polygons for each pose, the polygons need
only to be stored once while only the skeleton is stored for each pose.

Modern animation systems do not store the actual location and angles of the skeleton
for each keyframe but instead store transformation parameters which are required to
reach said keyframe. This makes it easier and more efficient to calculate the necessary
interpolated transformation parameters at runtime. There are two ways to determine
the transformation parameters which get stored. The first and less common is forward
kinematics. This means that the content creator directly specifies each transformation
parameter. While this gives designers a lot of control it is actually quite tedious and
hard to use for complex movements. The second and more common approach is inverse
kinematics. Here the designer moves the skeleton in the desired pose and the animation
system automatically calculates the required transformation parameters.

To store rotations in particular quaternions have become quite popular. Quaternions
are very similar to complex numbers. But instead of just one imaginary part they
have three “imaginary” parts and so span a 4D space instead of the plane spanned by

15

complex numbers. Like other concepts borrowed from mathematics this has become
quite a vast field of its own. The important characteristic, which makes them interesting
in computer graphics, is that rotations defined by quaternions are very numerically
stable. In particular interpolations between two rotations can easily be calculated by
interpreting two quaternions, each representing a rotation axis and an angle, as 4D
vectors and then linearly interpolating between those two vectors. This generally gives
good results at a low computation cost.

2.3.3. Lighting

The proper behavior of light in a scene or at least the illusion of proper behavior adds
significantly to the quality of a rendered image. Fully simulating how light spreads out
from a given light source is computationally expensive and usually reserved to scenarios
like rendering the effects in a movie. Calculating this so called global illumination takes
too long for real-time applications. In those cases lighting is usually limited to light
rays which are reflected only once (source to object to camera) or twice (source to
object to other object to camera). Calculating only this direct lighting without all the
indirect lighting, like the light from the sun which can bounce of many surfaces before
actually being captured by an eye or camera, is calculating the local illumination. As
a trade-off between quality and performance many real-time applications calculate local
illumination to a certain degree and add a constant amount of light called ambient light
to give the illusion of global illumination.

A more sophisticated illusion of global illumination can be achieved by pre-calculating
how the light spreads and storing this information in textures. These so called light
maps can then be used during shading to determine the ambient light term added to
the light calculated via local illumination. Light maps work well as long as there are not
too many moving objects in a scene. Every moving object may affect the light maps,
especially moving light sources. These dynamic lights are practically always rendered
using local illumination techniques.

Local illumination is calculated during the shading step. One approach is to calculate
the distance and direction of the n closest light sources for each pixel being shaded. This
information can then be used to calculate the sum of the contribution of each light source
to said pixel. Choosing a fixed number of light sources to account for was necessary
in early rasterization renderers as the instructions available in shader programs was
quite limited. Even today choosing a different n for each pixel may affect performance
negatively due to the architecture of modern GPUs. A more advanced implementation
may even perform a query to check if the line between the pixel being shaded and the
light source intersects with any geometry. This helps creating convincing shadows but
is rather expensive to compute.

In recent years deferred shading and deferred lighting have become popular. The
important ideas and concepts of deferred rendering algorithms actually date back to
1988 and 1990 ([7], [20]). Those papers do not use the term “deferred” but they describe
the same processes that are described in this paragraph. Deferred shading and deferred
lighting use multiple passes to create the final image. The rough algorithm of deferred

16

shading is to render the scene but instead of creating an image which gets send to the
display the output gets written to one or more textures. These textures do not contain
the final color information but information used to calculate said color like the normal,
the diffuse color, etc. After computing this information each light is rendered as a 2D
or 3D shape depending on the kind of light. In this lighting pass the information in
the textures created in the previous pass is used to calculate how much light a given
source contributes to each pixel. This information is then accumulated in yet another
buffer which eventually becomes the final image. Deferred shading allows for rendering
a relatively large amount of dynamic lights at the cost of requiring a lot of memory.
Deferred lighting is similar yet requires less memory at the cost of required an additional
pass which processes the geometry of the scene again. Due to having become popular
only recently these techniques may still be hard to find in Computer Graphics textbooks.
Two good books which each contain a detailed chapter on deferred shading are [19] and
[17]. Both use an actual video game and its renderer as an example to explain deferred
shading in practice. Both also contain helpful references of further material on the topic.

A popular trick to implement reflective surfaces like mirrors or water surfaces is to
use environment maps. These can be imagined like a cube surrounding the reflective
surface. Only the inner sides of this cube are textured. The texture for each side is
created by rendering the scene from the center of the cube facing said side. The cube
itself is never rendered. When the reflective surface is rendered the normal of each pixel
is used to determine which side of this imaginary cube would be hit by a ray from the
camera being reflected by the surface. This reflected ray is also used for a look-up in the
texture belonging to that side of the cube. With this information convincing reflections
of static geometry can be created efficiently.

2.3.4. Volumetric effects

Rendering volumetric effects like smoke or fog efficiently and convincing is still a problem
for rasterization-based renderers. A trick for rendering fog is to use the Z value during
shading to implement a linear interpolation between the color of each pixel and the
desired color of the fog. Objects further away appear to be covered by increasingly strong
fog. Early games used this effect to limit the viewing distance to improve performance
as fewer objects needed to be rendered. The only drawback of this trick is that it is
not entirely physically accurate. The screen space depth does not reflect the distance in
world space. Pixels near the border of sampled screen space are actually further away
from the camera than pixels near the center of the sampled space with the same depth
in screen space. This means that some objects may become visible by simply turning
the camera (so that the object moves from the center of the screen to its edge) even
though the distance between object and camera never changed.

More general volumetric effects like smoke require the use of so called “billboards”.
These are simply rectangular polygons, usually rendered by two triangles, which by
definition always face the camera. To render smoke the texture of such a billboard is
actually a sequence of textures showing the smoke itself. Billboards work well enough in
some situations like static cameras or objects which are very far away and hardly move.

17

But once the camera moves or is close to a billboard the illusion of a volumetric effect
quickly breaks down as it becomes apparent that a sequence of 2D images that always
faces the camera is being rendered.

Modern GPUs also support 3D textures. These are simply texture with several layers.
Each layer has the same size. Volumetric effects may simply be stored as a sequence
of 3D textures. During rendering multiple billboards intersecting the cube spanned by
the 3D texture at increasing depths are used to render the content the 3D texture. The
texture for each billboard is determined by sampling from the 3D texture. While this
creates much better results it comes at a high memory cost and at a high performance
cost. 3D textures are large due to their many layers and rendering multiple billboards
and blending them together requires a lot of bandwidth and many operations.

2.3.5. Anti-aliasing

As previously mentioned the rasterization algorithm is a form of sampling. The frequency
of the “signal” (polygons) being sampled has no upper bound. This means that aliasing
artifacts may potentially occur. This is actually quite common. These appear at the
boundaries of objects as the switch from polygon to the next when stepping from one
pixel to an adjacent one is the source of the high frequencies which are not sampled
correctly. Aliasing artifacts look like the pixels, which define the border of an object,
form a staircase instead of a smooth line.

One approach to dealing with this problem is to use super-sampling. This means ren-
dering the image at a higher resolution than is required for the final output to the display.
The large rendered image is downscaled to the output resolution before display. This
causes every pixel on screen to depend on several samples created during rasterization,
hence the term super-sampling. Full-scene anti-aliasing (FSAA) is an implementation
of such super-sampling. FSAA implementations usually allow the user to choose the
amount of super-sampling via a factor. This factor is the number of samples being taken
for each pixel. The final pixel color is the average of the color of all samples for that
pixel. An example of FSAA 2x is shown in figure 2.8.

Figure 2.8.: A 2×2 pixel grid with two sample points (purple) per pixel.

FSAA has a high performance and memory cost though as each image is rendered
at a higher resolution. Multisample anti-aliasing (MSAA) is an attempt to reduce the
performance cost of FSAA while still providing similar quality. MSAA still uses multiple
sample points per pixel with independent depth tests. Yet for each pixel and polygon,

18

for which at least one sample point passes the depth test, shading is done only once
usually for a point in the center of the pixel. The color computed this way is then copied
to all the sample points which passed the depth test. While successfully reducing the
performance cost by doing the shading for fewer sample points the memory cost still
stays the same. For each sample the color and depth information is stored separately.

Simply averaging the color of all sample points implies that each of the n sample
points per pixel contributes 1

nth to the final color of the pixel. Large n produce better
results as the area of a pixel covered by each polygon is approximated more precisely.
This can be seen in figure 2.9.

(a) Two sample points (b) Four sample points

Figure 2.9.: A pixel partially covered by a light gray and a dark gray polygon. Using more
sample points estimates the area covered by each polygon more accurately.

Yet a large n also increases the memory cost substantially. In 2006 nVidia introduced
Coverage Sampling anti-aliasing (CSAA) which allows for a good approximation of the
area covered by each polygon without using quite as much memory ([18]). CSAA intro-
duces a small color table for each pixel. This table has fewer entries than the number of
samples per pixel. Each sample stores the index of a row of the color table. This reduces
the memory cost per sample to a small integer (index) and the depth information. Even
when accounting for the color table for each pixel the memory cost per pixel is still
reduced compared to MSAA. An example configuration is a color table with four entries
and 16 sampling points, both per pixel. As it is unlikely that more than four polygons
overlap within the area of one pixel (with each polygon being the front-most one for
at least one sample point) this configuration would produce almost identical results to
MSAA with 16 sampling points. Yet 12 fewer color vectors would have to be stored per
pixel. This reduces the memory cost and also the memory bandwidth cost. The later
might translate into a performance improvement depending on the GPU and scene being
rendered.

Despite these optimizations super-sampling is still quite expensive. Especially when
combined with deferred shading which already requires a lot of memory. This has made
image processing based anti-aliasing algorithms popular in recent years. These algo-
rithms usually do not rely on any information created during rasterization beside the
rendered image so that they can be applied to as many scenarios as possible. For exam-
ple nVidia’s Fast approximate anti-aliasing (FXAA) uses edge detection combined with
blurring to find aliasing artifacts and hide them ([12]). This usually results in the entire
image becoming slightly blurry.

19

2.3.6. Screen space effects

Anti-aliasing is not the only area in which information from screen space is used together
with image processing algorithms to improve image quality. Two common techniques
from cinematography implemented this way are depth blur and motion blur.

In movies everything but actors and objects at a certain distance to the camera are
sometimes intentionally blurred to shift the audience’s focus to the unblurred regions. To
simulate this effect any image blur algorithm which allows for a per-pixel blur strength
adjustment may be used. The blur strength of each pixel is chosen as a function de-
pending on the distance to a pre-defined depth. This causes everything but objects at
the desired depth to become blurry.

Motion in movies is blurry due to technological reasons. Real cameras do not capture
exact points in time but short time intervals (the time the shutter is open). To simulate
this effect, after rasterization each object may be blurred in the direction of the motion
of said object from the point of view of the virtual camera.

Another screen space effect is so called Screen space ambient occlusion (SSAO). Am-
bient occlusion algorithms attempt to determine if an object or point is occluded from
light sources due to its surroundings. SSAO uses the normals of each pixel to approxi-
mate ambient occlusion and makes occluded pixels appear darker. This enhances image
quality by giving the viewer more depth cues. Like deferred shading SSAO has only
achieved high popularity fairly recently. As such information about it is hard to find in
textbooks. [5] provides a good starting point into the topic.

2.4. Recap

This chapter explained the first of the two techniques which shall be combined into a
new hybrid renderer. Rasterization is based on polygons. Each object is defined as a
set of polygons in its own coordinate system called object space. Transformations are
used to determine each polygons position and facing in world space in which all objects
co-exist. World space coordinates are then transformed to camera space and further into
screen space. In screen space the polygons are sampled into a 2D image. Each pixel is
shaded by a small program calculating the amount and color of the light reflected by
the polygon covering that pixel. Bitmaps called textures are used as a source of varying
information like the diffuse color or the normal of a polygon at different points.

20

3. Ray tracing

This is the second chapter discussing the fundamentals of 3D computer graphics which
are necessary for implementing the hybrid renderer. It focuses on ray tracing. Ray
tracing is a technique that is very similar to rasterization, especially when it comes to
the implementation of some of the advanced techniques. For example the algorithms
used for anti-aliasing or for screen space effects work pretty much the same way.

The significant difference lies in the way the “vision ray” model introduced in the
previous chapter is being implemented. Rasterization uses transformations between
several spaces and computes an orthogonal projection in the end. Ray tracing only
needs world space, and object space if instancing a model several times is required, and
actually traces the path of each vision ray directly in this space.

This chapter is structured similar as the rasterization chapter. It starts with a discus-
sion of the basic ray tracing algorithm and primitives, e.g. polygons and voxels, suitable
for said algorithm. This is followed by a short overview of hardware capable of fast ray
tracing. Next is a discussion of more advanced techniques, which includes a compari-
son to rasterization and how many effects can be implemented similarly. The chapter
concludes with a short recap of the most important points.

Just like the previous chapter the topics discussed here are mostly standard text
book knowledge. Finding a good text book is a little bit harder though. Many books
on computer graphics, e.g. [23] and [21], include chapters on ray tracing as well as
rasterization but ray tracing is not quite as commonly discussed in text books as is
rasterization. As with rasterization the best book on ray tracing depends on the reader’s
preferences and a quick look into the table of contents of a computer graphics book should
reveal if and how detailed ray tracing is discussed. Some books use the term ray casting
instead of ray tracing.

3.1. Basic approach

3.1.1. Ray tracing

Ray tracing is a much more direct implemenation of the “vision ray” model. It does not
need to concern itself with coordinate systems and spaces as much. Unless instancing,
using the same object over and over again while only varying some parameters such as
its position and orientation, is used one space, namely world space, is sufficient. In this
space a virtual camera is defined by defining its location, orientation and parameters for
setting up the image plane. These parameters are basically the same as those necessary
for computing the final transformation matrix which transforms from camera space to
screen space. With the help of aspect ratio, field of view and distance to the camera a

21

Color castRay(Vector start, Vector direction):

Float lambda = infinity

Object nearest = nil

for each Object o in scene:

objectLambda = intersect(o, start, direction)

if objectLambda >= imagePlaneDistance and objectLambda < lambda

nearest = o

lambda = objectLambda

end if

end for

return computeShade(nearest, start, direction, lambda)

end

Figure 3.1.: Pseudo-code implementation of ray tracing. intersect has to return values
smaller than imagePlaneDistance in the case the ray defined by start and
direction does not intersect o for the correct result to be computed.

rectangular plane perpendicular to the viewing direction of the camera can be calculated.
The location of the camera and equidistant points in said plane are used to define rays.
The amount and layout of these points is the same as the pixels in the final output. This
means there is one point, and thus ray, for each pixel. For each pixel a castRay method
is called to determine its color. The pseudo-code for this method is shown in figure 3.1.

This is in so far similar to rasterization as it determines the closest object for each
pixel uses that for shading. The difference is that the outer-most loop, which is not
shown in this pseudo-code, iterates over all pixels and tests all objects for each pixel
in the case of ray tracing. Rasterization iterates over all objects and tests all relevant
pixels for each object.

As ray tracing follows the path of each ray starting at the camera’s location traveling
through the image plane to the first object being hit, it is a direct implemenation of the
“vision ray” model. This is illustrated in figure 3.2.

3.1.2. Primitives

The pseudo-code in figure 3.1 does not make any assumptions about the kind of objects
being tested other than it being possible to test whether that object intersects a ray. This
means that any geometric object for which a ray-intersection test can be implemented
can be used for ray tracing.

Planar polygons, including triangles as they are used for rasterization, can be easily
used. The intersection test has to find out in which point the ray intersects the plane in
which the polygon lies and then test whether this point is inside the finite region defined
by the polygon. Any algorithm that requires texture coordinates can be implemented in

22

Figure 3.2.: For each pixel a ray is sent from a common starting point through the image
plane (at the location corresponding to the pixel) into the scene. Each pixel’s
final color depends on which object it hits and where said object is hit.

a ray tracing renderer just as easy as it can be implemented in a rasterization renderer.
The intersection test simply takes care of calculating the interpolated texture coordinates
once a ray is found to intersect a polygon. From that point on everything works the
same as it does in the case of rasterization.

One particular strength of ray tracing is that it is quite easy to implement intersection
tests for curved surfaces such as spheres. Rasterization renderers require these kinds of
surfaces to be approximated with triangles. Testing whether a ray intersects a sphere
can be implemented easily allowing for an efficient implementation of actual spheres
instead of approximated spheres. Any kind of curved surface for which an efficient ray-
intersection test is known can be used easily as a primitive to build objects or entire
scenes.

When modeling an object the designer sometimes subtracts one primitive from another
one, e.g. subtract a sphere from a thin plate to create a plate with a hole in it. While
rasterization relies on approximating the result with as many triangles as necessary, ray
tracing renderers can perform such operations efficiently in real time. When a ray hits
the plate the renderer can check if it is also inside the sphere. If so, the ray is treated as
if it does not intersect the plate. This reduces the need for approximation further and
allows ray tracing to use models which look more realistic.

One kind of primitive which has become popular are voxels. These are discussed in
their own section.

3.1.3. Voxels

Voxels (volume elements) are a natural extension of pixels (picture elements) into a 3D
space. While a pixel represents a finite area in a 2D space such as a picture, a voxel

23

represents a finite volume in a 3D space. Voxels share many properties with their 2D
counterpart. The most common shape used for voxels are cubes just like pixels are very
often squares. Technically a location, size and color/shading parameters are necessary
to fully define a voxel. To reduce the amount of information which needs to be stored,
voxels are often arranged in a 3D grid just like pixels are stored in 2D grids. All grid
cells have the same fixed size and the location is implicitly stored by defining an order
in which the grid cells are stored. The shading information for a given location can by
found in memory by calculating its address based on the predefined order, just like the
address of the color information for a given pixel location can be calculated.

Many image processing filters can be naturally extended to 3D data. For example a
gaussian blur filter can be easily extended to more dimension because it is separable,
which means that it can be applied as a series of 1D filters. Also the output from
3D scanners can be turned into voxel information easily. 3D scanners usually output
“point clouds”. Sampling these into a 3D voxel grid is easier than trying to extract
surface information (polygons). This makes it easier to create realistic looking objects
as existing objects can easily be scanned and rendered using voxels.

3D imaging based on voxels is particularly popular for medial applications. In this
field they have been studied and used for many years already. Their popularity comes
from the properties described above. Voxel data is easy to acquire and process.

Unfortunately voxel data requires a lot of memory especially at high resolutions. Also
rendering can be unnecessarily costly if there is a lot of empty space (grid cells which
are marked as empty). To minimize these two issues voxels are often put into a spatial
partitioning data structure as a pre-processing step before rendering when possible. A
popular data structure is the so called Sparse Voxel Octree (SVO). SVOs partition
a 3D space by defining three planes in each inner node. For each plane spanned by
a pair of basis vectors there is one dividing plane parallel to it. These three planes
subdivide the space represented by the inner node into eight disjoint subspaces. While
the root node represents the entire 3D space each inner node only represents a fraction
of it. Each leaf node then represent a distinct and unique subset of that space. Each
node can be interpreted as a voxel whose location and size is implicitly defined by the
tree’s structure. Often not only the leaf nodes but also the inner nodes store shading
information. The shading information in inner nodes is averaged from the information
stored in their subtrees. By doing so the SVO stores the same information at different
resolutions with each depth level representing a different resolution. SVOs also discard
all leaf nodes which are unreachable from the outside and so are never visible, i.e. the
inside of objects stored in a SVO is usually hollow. It is sufficient to store one single 3D
point to define all three dividing planes, namely the “center point” in which all three
planes intersect. This precisely defines the location of all three planes.

SVOs are not balanced. Empty space causes the tree to terminate into a leaf node
early. This is actually an advantage because the shallow depth allows empty space to
be traversed quickly during rendering. It also reduces the amount of data which needs
to be stored. Combined with the discarding of invisible voxels SVOs are quite efficient
in terms of storage and rendering costs. Their main disadvantage is that they require a
costly pre-processing step before rendering which can not be performed in real-time.

24

3.2. Hardware acceleration

Modern rasterization implementations are backed by powerful hardware to perform each
task quickly. There are several proposals for hardware which does the same for ray
tracing. For example Woop et al. from the Saarland University have proposed a pro-
grammable Ray Processing Unit (RPU) which can perform ray-primitive intersection
tests efficiently and execute shader programs for each ray hitting a primitive ([24]).
While their results are promising especially considering the low clock rate of their imple-
mentation (as a result of the hardware they used for testing) no hardware implementation
for accelerating ray tracing has become widely adopted yet. With the popularity of ras-
terization and the continued improvements in that area there was little need to switch
to ray tracing in recent years.

Implementing ray tracing on GPUs meant for rasterization has become more and more
common in recent years. Due to their high programmability modern GPUs have become
general purpose processing units which are suited for a variety of tasks. Ray tracing is
often implemented by sending a four-sided polygon to the GPU which covers the entire
screen. The programs responsible for shading then perform all the ray-primitive inter-
section tests and by doing so implement ray tracing on a GPU designed for rasterization.
While this is not the most efficient use of the available processing power of a modern
GPU it works well enough for real-time applications.

3.3. Advanced techniques

Many of the algorithms used for rasterization can also be used for ray tracing. Algorithms
which are based on image processing like filter-based anti-aliasing or screen space effects
can be implemented just as easily for ray tracing. Also super-sampling-based anti-
aliasing works the same way, as does texture mapping when using polygons as primitives.
Spatial partitioning also works similarly except that it is even more important in order
to get good performance. This makes animations harder to implement. The animated
primitives are no longer in an optimized data structure once their new position and
orientation has been calculated. This slows down rendering.

3.3.1. Spatial partitioning

The chapter on rasterization already included an overview of spatial partitioning tech-
niques. Due to the central importance of spatial partitioning for ray tracing, in particular
when using voxels and SVOs, this section discusses tree traversal to find the first object
hit by a ray in more detail. As an example, algorithms for finding the first voxel hit by
a ray by traversing a SVO are described. Figure 3.3a shows an example of an octree in
general, while figure 3.3b uses a quadtree, a 2D octree, to illustrate traversal through
such a tree structure.

Finding the leaf node in an octree which contains a certain point is rather easy. The
three separating planes at each non-leaf node are used to determine in which octant the
point is. The traversal then proceeds with the child for that particular octant. This is

25

(a) An octree of depth 2. The left shows
an increasingly subdivided spatial rep-
resentation of the octree while the right-
hand side shows the associated tree and
its levels.

1

2

3 4

(b) A quadtree and a blue ray traversing it.
At first the leaf node 1 is visited and
then the traversal proceeds on to leaf
node 4 in the order shown. Before nodes
2 and 3 are visited their parents, each
representing an entire quadrant, are vis-
ited by the algorithm.

Figure 3.3.: An octree and a quadtree. These are data structures commonly used for spa-
tial partitioning in particular when using voxels. The examples always use
the center of the current square or cube to subdivide the space. In general
this restriction is not necessary. Source of the octree picture: Wikipedia.5

repeated until a leaf node is reached. To find the first voxel hit by a ray the SVO has to
be traversed to the leaf node containing the starting point of the ray.

Once this node is reached the algorithm traverses to leaf nodes along the path of
the ray until one is encountered which is not marked as empty. If it is transparent,
shading information is accumulated for use in the final shading process later and traversal
continues. If it is opaque, the final shading is performed using all the information
accumulated along the path and the shading information stored in the opaque voxel.

Finding the next leaf node along the path works by finding the first of the three
separating planes which the ray intersects. Each plane can be viewed as a passage to
a particular sibling node. If this sibling is not a leaf node, the entry point into that
siblings space can be used to traverse down the tree to the next leaf node. Also a check
whether the ray leaves the space represent by the current parent node is necessary. If
so, the algorithm has to traverse one level up the tree and proceed to identify the proper
sibling at that level. This traversal up the tree may happen multiple times in succession.

There are several ways to implement the traversal to the siblings. This is also the
key difference of the different implementations of SVOs. Some implementations store
parent pointers and maybe even sibling pointers in addition to child pointers to be able
to traverse directly as described above. Other implementations update the starting
position of the ray or use a stack to remember the last path taken from the root node
to a leaf node. This information is then used after restarting the traversal from the root
node.

As previously mentioned in the section on voxels SVOs often also contain shading

5http://en.wikipedia.org/wiki/File:Octree2.svg

26

http://en.wikipedia.org/wiki/File:Octree2.svg

Figure 3.4.: Reflection of a ray. When the first ray hits the reflective surface (light blue)
a second ray is triggered which eventually hits an opaque object.

information in the inner nodes. By doing so the traversal down the octree can be
terminated early once the size associated with the current node is roughly the size of
a pixel from the point of view of the camera. Doing so not only improves performance
by processing viewer nodes, this also avoids aliasing artifacts as for each pixel on screen
information of an appropriate resolution is used. This issue and solution is similar to
texture mapping and why mip-mapping is used there.

Traversal through other spatial partitioning data structures is usually quite similar.
The main difference is how the next child or sibling is identified. This depends on the
criterion used to subdivide the space.

3.3.2. Reflection and refraction

Reflections, and consequently lighting, are quite easy to implement in a ray tracing
renderer. Every time a ray hits a primitive the primitive’s surface normal can be used
to determine the direction of the reflection of that ray. The castRay method can then
recursively call itself with the reflected ray as parameter. An example of this is shown in
figure 3.4. The final color associated with the initial castRay call is calculated as linear
combination of the shade determined by the primitive initially hit and the color returned
by the recursive method call. The weights of the linear combination can be a property
of the first primitive to allow for objects that reflect light in different ways.

As lighting is the amount of light reflected, dynamic lighting can easily be implemented
by casting additional rays towards the light sources from each hit primitive. Each such
secondary ray, which is yet another recursive method call, which is not obscured then
contributes a certain amount of light based on the light source, its direction and its
distance.

27

Refraction can also be implemented via secondary rays and recursion. Each ray which
hits a transparent primitive triggers secondary rays whose directions depend on the
reflective and refractive properties of the primitive. The final color again is a linear
combination of the primitive’s properties and the color information returned by the
recursive method calls for the secondary rays.

3.3.3. Volumetric effects

Volumetric effects can also be implemented easily using ray tracing. As a ray travels
through such an effect it simply “picks up” shading information which is used in a linear
combination when determining the final color. The best implementation for doing so
depends on the volumetric effect itself and how the renderer works exactly. One possible
solution is to determine where a ray enters and exits the volumetric effect and then
use the distance traveled inside the effect to determine the shading parameters. For
effects which are not distributed evenly a better solution would be to take samples along
the path that is inside the volumetric effect and combine those samples into shading
parameters. If voxels are used as primitives each voxel along the path of the ray may serve
as a sample. These solutions are still more efficient than their rasterization counterparts
as they minimizes the number of samples taken from the volumetric effect and they also
minimize the amount of overdraw, i.e. the number of times a pixel is shaded only to
be overwritten later with new information because triangles have been processed in a
non-optimal order from the point of view of said pixel.

3.4. Recap

This chapter gave an overview of ray tracing. In contrast to rasterization it does not
need as many different spaces or coordinate systems. Instead it relies on intersection
tests which test whether and where a ray intersects with a given primitive. Spatial
partitioning is much more important for ray tracing to be able to quickly decide for
which primitives intersection tests have to be performed. Once the intersection with the
primitive closest to the camera has been found, shading is done similar to the shading
in rasterization. In fact, many advanced techniques, especially those relying on image
processing algorithms, work the same or similarly with ray tracing.

28

4. Related work

Very few publications have focused on basic rendering algorithms in recent years. Most
research in the field of computer graphics is focused on advanced and specialized top-
ics like physics-based simulations to increase the realism of animations. For example
simulating realistic behavior of cloth, e.g. a flag in a windy environment, has become
a popular topic. But in these cases only the deformation of the cloth mesh is interest-
ing and not so much the way it is rendered. This is particularly true for rasterization
as the most recent developments, which have any notable impact, are the adoption of
deferred shading, a technique from the late 80’s as mentioned in the lighting section of
the rasterization chapter, and filter-based anti-aliasing in modern games. There are few
research opportunities outside of advanced, specialized topics since a lot of research has
already been done and the application of its results only waits for hardware which make
them feasible as is the case in deferred shading.

In the case of ray tracing, in particular when using optimized data structures to speed
up the rendering, there are more recent publications to be found. Using modern GPUs
and their unified shader architectures for tasks other than rasterization has become quite
popular. This has lead to research on using GPUs for ray tracing in order to achieve
hardware accelerated ray tracing without the need of specialized hardware. Publications
on this topic are still fairly new and recent.

This chapter aims to mention research and applications from recent years, which has
not yet become standard text book knowledge as many rendering algorithms already
have. The mentioned publications are less about specialized topics like physics sim-
ulations but more about the basic rendering approaches. It is subdivided into three
sections. The first one focuses on rasterization related works, the second one focuses on
ray tracing related work and the last section is about works which already combine the
two approaches.

4.1. Rasterization

In the screen space effects section of the rasterization chapter motion blur and depth
blur, also called defocus blur, were discussed. A novel approach to implement these
two effects is stochastic rasterization. In stochastic rasterization a modified sampling
approach is used. Traditional rasterization only considers a specific point in time. This
means a sample’s color is only dependent on its coordinates. In stochastic rasterization
time intervals are considered instead. A sample’s color also depends on a time parame-
ter. Instead of an exhaustive sampling over the entire space and time interval for each
primitive a random sampling approach is used. Sampling efficiency, meaning the num-
ber of random samples which are actually inside a primitive, is still a problem. Recent

29

publications have successfully improved this efficiency ([10], [16]). But the performance
cost still does not justify the added realism over simpler and faster approximations such
as deriving a smoothing filter from motion and depth parameters to blur the image after
rasterization.

A quite novel and new approach to rasterization is wavelet rasterization proposed by
Manson and Schaefer ([13]). They use object boundaries to calculate wavelet coefficients
which can then be used to synthesize a rasterized image. Their approach is very interest-
ing as it automatically creates anti-aliased images. Unfortunately it currently does not
allow for texture mapping and is confined to a CPU implementation. This makes wavelet
rasterization unsuitable for many computer graphics applications as it lacks realism and
performance. If those issues are resolved by further research though this approach may
become a viable alternative to traditional rasterization.

4.2. Ray tracing

Laine and Karras have proposed an implementation of ray tracing using a SVO on a GPU
([11]). Their implementation renders a four-sided polygon covering the entire screen. It
then uses the pixel shader step in the rasterization pipeline of a modern GPU to perform
the ray tracing. They also add contour information to the SVO. This means that each
voxel is not necessarily a cube but the intersection of a cube and the space enclosed by
two parallel planes with arbitrary rotation and distance. Using contours improves the
image quality when zooming so close into the scene that even the voxels at the highest
level of detail become larger than a pixel. Laine and Karras’ implementation also renders
the image at a low resolution first and uses the information gained this way to start the
octree traversal of each ray for the full resolution at a point closer to its final destination.
They are able to achieve rendering in real-time.

Crassin et al. use a very similar approach in their so called GigaVoxel renderer ([6]).
Their basic setup is similar yet they use rasterization of bounding volumes to determine
a starting position close to the final destination for each ray. The actual ray tracing
is done in the pixel shader step as well. Their underlying data structure is not an
octree. Instead they use N3 brick trees. This is a generalization of octrees. While
octrees subdivide the space into two regions along each dimension each step a N3 brick
subdivides the space into N regions along each dimension each step. This allows for
trade-offs between memory usage and performance. Large N generate shallow trees
which are fast to traverse but are also less efficient in terms of storage as more empty
space gets encoded. The GigaVoxels renderer also achieves interactive framerates.

While the previously mentioned implementations perform the tree traversal for each
ray individually and do so in a depth-first way Garanzha and Loop have shown an efficient
breadth-first traversal of ray bundles ([8]). Their implementation bundles similar rays
and computes a containing frustum for each bundle. While traversing their spatial
partitioning tree at each depth intersection tests for all frustums, which have not yet
reached a leaf node, are performed before any intersections tests at higher depths are
performed. By doing so the authors reduce the divergence between threads to utilize the

30

GPU more effectively. The downside of this implementation is an increased complexity
which implies a higher cost when used in a commercial application.

Dennis Bautembach implemented animated SVOs using skeletal animation ([4]) in an
attempt negate a disadvantage of spatial partitioning data structures, namely that they
are hard to animate. But he ignored the spatial partitioning by simply transforming
each voxel as if it was a vertex of a triangle. The transformed voxels were rendered as
if they were small four-sided polygons of the size of one pixel. This even introduced
new artifacts such as holes when an object came too close to the camera. While the
implementation works and even can compensate for the new artifacts it introduces,
it loses the performance advantage usually associated with spatial partitioning. This
implementation of SVOs is closer to rasterization as it is to ray tracing even though
SVOs are usually associated with the later.

A new approach for efficient ray tracing has been proposed by some researchers ([3],
[15]). A naive ray tracing implementation tests all ray and primitive pairs for intersec-
tion. While other ray tracing implementations use pre-computed spatial partitioning
data structures to efficiently decide which tests have to be performed this new approach
uses a divide-and-conquer strategy during the ray tracing process. Rays are not traced
individually but as bundles. A recursive function only performs the ray-primitive inter-
section tests if the number of pairs is sufficiently small. If that is not the case spatial
partitioning is performed on-the-fly and recursive function calls are made with each call
only processing one subset of the space and the associated rays and primitives. While
the results of these implementations are promising, in particular for dynamic scenes,
unfortunately no massively parallel implementation as required for GPUs has been pro-
posed yet. The existing implementations are restricted to run only on a CPU and so
can not achieve the framerates of GPU-based renderers.

Another novel approach which does not rely on pre-computed spatial partitioning was
proposed by Szécsi and Illés ([22]). They also do not use polygons or voxels as their
primitives but so called metaballs. Metaballs are spherical shapes which have a core and
decreased density as the distance to the core increases. This kind of primitive is useful
for representing particles, e.g. when simulating fluids. The proposed implementation to
render these metaballs uses a rasterization step in which each metaball is represented
by an enclosing billboard. This rasterization step does not determine the final color of
each pixel but gathers information about which metaball potentially contributes to the
color of which pixel. In a subsequent step ray-metaball intersection tests for each pixel
are used to accumulate the final color information. Interactive framerates are achieved
even when the number of primitives is in the order of hundreds of thousands.

4.3. Hybrid approaches

There is no research on combining rasterization and ray tracing into one hybrid renderer.
The only works in this area come from the video games industry. In 1999 a game called
Outcast was published which used ray traced height maps for its environments ([2]).
To fill the environments with objects and characters rasterization of texture-mapped

31

polygon meshes was used. The game was often praised for its visuals. It features
effects like simulated waves and convincing reflections on water surfaces which were
quite spectacular for its time. The game suffered from low image resolutions and low
framerates though. The GPUs of that time were only able to assist in rasterization
and bus bandwidth for uploading data to the GPU was quite limited. This resulted in
Outcast using a renderer implemented entirely in software and so requiring a very strong
CPU.

Cevat Yerli et al. from Crytek mentioned in their keynote for the High Performance
Graphics conference in 2010 ([25]) that ray tracing instead of rasterization or maybe
a hybrid approach may become the preferred way to render graphics in games in the
future. They mention using data structures like SVOs but it appears that they still
do not use ray tracing, even though it is a data structure for efficiently implementing
ray tracing. Instead their SVOs are used during production and are later exported to a
different format suitable for rendering via rasterization. It is hard to say if the actual
CryENGINE, Crytek’s game engine, really uses more than rasterization for the final
rendering during gameplay as it is proprietary technology. Judging from the keynote it
sounds like alternatives including hybrid approaches are being considered, especially for
stronger hardware in the future, but are not yet used.

In a recent demo of the capabilities of the new Unreal Engine 4 Epic Games has shown
some very impressive lighting effects among other eye-catching visuals. In a presentation
on the technology used in this demo ([14]) they revealed to have used a sparse voxel data
structure and voxel cone tracing, which is very similar to ray tracing, to achieve their
lighting. In voxel cone tracing the path of a cone is traced instead of the path of a
ray. This can simply be achieved by tracing the path of a ray in a voxel data structure
but instead of visiting all leaf nodes, to get the highest resolution, the tracing stops at
coarser detail levels to simulate the effect of the ray actually being a cone. As the ray
travels the detail level of the voxel data structure being used is decreased further and
further. This simulates the width of the cone increasing with respect to the distance to
the starting point. Voxel cone tracing is basically a fast approximation of actual voxel
ray tracing. In the case of the Unreal Engine 4 demo this was used to collect lighting
information to achieve global illumination. As shown by the demo this approximation is
sufficient for realistic lighting effects. It appears as if this technology will not be used in
the near future as it is still too computationally expensive. Tim Sweeney, CEO of Epic
Games, mentioned so in an interview ([1]).

32

5. Hybrid rendering

This chapter presents the core of this work. It discusses how rasterization and ray tracing
may be combined into a hybrid approach in such a way that different objects in a scene
are rendered by different algorithms depending on what is more suitable. The chapter’s
structure is as follows. It begins with a brief analysis of the goals of combining the two
rendering approaches. After this the problems faced when combining the techniques are
discussed. This is then followed by explanations of how the two rendering approaches
are used by the hybrid renderer with a focus on ray tracing, the less commonly used
approach. Since no advanced lighting or other effects are implemented by the proposed
hybrid renderer, implementing rasterization required little more than calling the proper
functions of the Application programming interface (API) used to access the GPU. The
chapter ends with exploring an algorithm to convert a textured polygon mesh into an
SVO and a recap of the chapter. SVOs are the data structure that has been chosen
for the ray tracing part of the hybrid renderer. While creating polygon meshes and
texturing them is well understood with many free tutorials and examples on the internet
the creation of voxel data is less common. This necessitates the discussion of a way to
acquire voxel data in this chapter.

Implementation details and an evaluation are left to subsequent chapters. The follow-
ing sections describe the high level theory behind the implementation.

5.1. Goals

As initially mentioned rasterization and ray tracing have different advantages and disad-
vantages. The goal of this work is to combine the two approaches to gain the advantages
of both.

Both approaches have in common that they are highly parallel problems. The tasks
performed per primitive or per screen pixel such as transformations or shading can be
performed in parallel for all primitives or pixels at the same time. This makes both
rasterization and ray tracing well suited for being performed by a modern GPU which
offers far more Floating-point operation per second (FLOPS) than a Central Processing
Unit (CPU).

Rasterization has a low dependence on spatial partitioning to achieve high perfor-
mance. This makes it well suited for dynamic scenes which include animated meshes
that deform over time. For example animating many kinds of movements of a person
requires deformations as muscles contract or the clothing stretches. Rasterization can
render such meshes efficiently even though the position of the vertices of each trian-
gle, both the absolute position in space and the relative position to the other vertices,
changes in every frame that is being rendered.

33

Rasterization works by sampling from surfaces. This is both an advantage and a
disadvantage. The amount of bytes required to define a surface is independent of its
size, i.e. to make a triangle bigger the vertices have to be moved further apart but each
vertex still requires the same amount of memory. This is a clear advantage when working
on a system with limited capabilities such as a mobile phone. It is also a disadvantage
because rasterization can not render all kinds of primitives directly. As an example fog
is best represented by a volume. But rendering volume data via rasterization requires
approximations or tricks such as a series of “billboards” with each billboard representing
a slice of the volume data.

Another big disadvantage of rasterization is that there is no obvious way to implement
many phenomena which are based on how light travels through space. Phenomena such
as shadows, reflections, refraction or transparent surfaces required additional non-trivial
algorithms in the shading step on top of the rasterization algorithm itself. Years of
research in computer graphics resulted in many algorithms for more realistic lighting
but many effects are still usually faked (ambient occlusion) or almost completely absent
in many implementations (reflections and refraction).

In theory the math behind rasterization, in particular all the coordinate systems and
transformations between those, is harder to understand than the math needed for ray
tracing, which just requires simple vector algebra for setting up an image plane, cal-
culating rays through said plane and intersection tests of rays with primitives. But in
practice most of the mathematical complexity is hidden behind modern graphics APIs
such as DirectX and OpenGL. These APIs offer utility functions to create all the nec-
essary matrices and for multiplying matrices and vectors which means developers only
need a high level understanding of rasterization without having to understand all the
mathematical details.

Ray tracing is in many ways the opposite of rasterization. The math is easier to
understand and has to be understood by the developers because there is little API
support to help with it. Also implementing advanced lighting effects is rather easy as
the same ray tracing algorithm, that is used to find an intersection with a primitive for
each pixel, can be used during shading to trace the path of light rays back to the light
sources in a scene. Reflections and refraction are also merely such secondary rays with
their direction adjusted by the laws of physics. Also rendering volumetric effects such
as fog or smoke is easy by tracing the path of a ray through a volume. Ray tracing can
be used with any kind of primitive for which an efficient intersection test is known, e.g.
planes/triangles or voxels.

But ray tracing is quite slow usually. The high number of potential intersection
tests (each ray with each primitive) can cause rendering to slow down quickly. As
a consequence ray tracing heavily relies on spatial partitioning, which itself often has
to be pre-computed because its computational cost is high, to minimize the number
of intersection tests actually being performed. This in turn means that any kind of
animation that is more than just a translation, rotation or scaling is hard to implement.
In particular deformations require the recomputation of the spatial partitioning.

So the goal of this thesis is to propose a hybrid renderer which offers efficient animation
of deformable objects and also an easy and obvious way to implement advanced lighting

34

effects and easy rendering of more than just surfaces. This will be achieved by rendering
objects with different algorithms based on their kind.

5.2. Combining the two techniques

To achieve the goals set for the hybrid renderer the choice was to render each object in
a scene based on what algorithm is best suited for it. Any object that is animated and
requires deformations during animation, e.g. a person or an animal, is being rendered
via rasterization of polygons. Any other object, in particular the static environment, is
rendered via ray tracing of voxels. Ray tracing itself allows for easy implementation of
advanced lighting and volumetric effects.

Voxels have been chosen for several reasons. They allow for easy filtering similar to
images. Voxels are just a 3D extension to pixels and a 3D grid of voxel data is nothing
more than a 3D image. Many image processing algorithms can easily be extended to 3D
images which means voxel data offers new capabilities for content creators, e.g. by first
creating a polygon mesh with common industry tools, then converting the mesh into
voxel data and finally applying filters on the voxel data to achieve the final look. SVOs
are well known as a spatial partitioning data structure to efficiently store and render
voxel data so there is a well understood data structure available for use in the hybrid
renderer. And finally voxels, as volume primitives, are very different from polygons
which are surface primitives. As such they proof that different kinds of primitives can
be used in the rendering of a scene.

There are two problems that need to be solved when using different rendering algo-
rithms based on what object is being rendered. The first problem is occlusion. Ras-
terization uses a depth buffer to decide for each pixel which is the front most triangle.
As the triangles may be processed in any order and as they may overlap the depth of
each pixel has to be known at all times. Ray tracing on the other hand either uses an
algorithm which will automatically test the primitives in the order they are seen by the
ray, e.g. tracing in an SVO works this way, and terminates once it reaches a fully opaque
primitive. Or it calculates the distance each time it finds an intersection and uses the
shade computed for the intersection with the lowest distance. In either case ray tracing
does not need a depth buffer. The other problem is that when shading an object every
object rendered via the other technique has to be accounted for, e.g. when calculating
the lighting, even though it may not be in the same spatial partitioning data structure.

At first it may appear that the solution to the occlusion problem is to use the same
depth buffer for ray tracing as well and compute a depth based on the distance between
image plane and intersection. In fact reading from the same depth buffer and updating it
when necessary while ray tracing is part of the solution. However the depth written into
the depth buffer by rasterization is not simply the distance between the image plane and
the front most polygon at each pixels location. The perspective projection matrix and
subsequent division by the original Z value used to ensure that the result of an orthogonal
projection appears to be a perspective projection causes the depth value of each pixel
to increase non-linearly with increasing Z value of the vertex. Multiplying a vertex

35

(X,Y, Z,W) with the perspective projection matrix (appendix A.4) and subsequently
dividing by the original Z results in

depth =
1

nearZ − farZ
·
(
−nearZ − farZ + 2 · nearZ · farZ · W

Z

)
.

Table 5.1 shows the resulting depth for different values of Z. As can be seen when
increasing Z from 2 · nearZ to 3 · nearZ, an increase of nearZ, the depth increases by
1
3 · farZ. When increasing Z by another nearZ to 4 ·nearZ the depth only increases by
1
6 · farZ. So with increasing Z the increase in depth gets smaller. In turn this means
that increasing the depth linearly implies a more than linear increase in the Z value.
This means that the precision of the depth buffer is higher in close proximity to the
camera which is usually desirable.

The easiest way compute the depth, as defined by the depth buffer used by rasteri-
zation, for each intersection when performing ray tracing is to transform the point at
which the intersection occurs as if it was a vertex of a polygon. Adding a model to world
transformation in this process is cheap as doing so only requires to multiply the matrices
to perform the projection with the model to world matrix once for each object and then
reusing the matrix obtained this way for each intersection. By also including a model
to world space transformation each ray traced object can be rendered while it is in its
own coordinate system and it will still appear at the correct position on screen. This is
desirable for rendering SVOs as the voxels are axis-aligned and so the intersection tests
become simpler and faster. Later in this chapter a method will be explained to use this
model to world transformation to allow for almost arbitrary transformations, such as
rotation or scaling, when rendering ray traced objects.

The shading problem can be solved by triggering secondary rays in the pixel shader
program of each object rendered via rasterization and by using a two-step ray tracing
algorithm which once traces through objects which are stored in a spatial partitioning
data structure and once traces through all other objects. The two-step ray tracing then
picks the front most intersection based on the depth at which each trace step encountered
an opaque object. This is certainly not an efficient way of solving this problem as many

Z depth

nearZ −1

2 · nearZ nearZ
farZ−nearZ

3 · nearZ nearZ+ 1
3
·fearZ

farZ−nearZ

4 · nearZ nearZ+ 1
2
·fearZ

farZ−nearZ

farZ 1

Table 5.1.: Depth values for W = 1 after transforming a vector with the perspective
projection matrix and dividing the new Z value by the old one.

36

intersection tests have to be performed, in particular in scenes with many deformable
objects. The hybrid renderer proposed in this thesis does not account for this problem.
In fact it does not implement secondary rays at all as the focus was to get a simple
proof of concept first and so leaving any advanced effects that require secondary rays or
complex pixel shader programs for future work.

5.3. Rasterization

The rasterization part of the hybrid renderer works just as described in chapter 2. Each
object is defined in its own coordinate system or space and its vertices are transformed,
in several steps, to the coordinate system of the screen. The resulting triangles are
rasterized (sampled from) and for each pixel a shader program is executed to determine
its color. In this shader program the color is determined by reading a filtered sample
from a texture. During the rasterization of each triangle the depth buffer is also updated.
Modern graphics APIs offer functions to do all those steps with little more than a high
level understanding required by the user.

The only more advanced feature added for proof of concept purposes is skeletal ani-
mation. The data structure used for doing so is the one used by the MD5 format which
is part of id Tech 4, the game engine used for example for the video game Doom 3. MD5
stores a skeleton for each mesh in the form of a tree of joints. Each joint has a position
and an orientation. The orientation is stored as a quaternion which defines a rotation
axis and angle. The actual position and orientation of each joint is determined by rotat-
ing the stored values according to the parent’s orientation. This means movement of a
joint affects all its children. Figure 5.1 shows an example of a skeleton defined this way.

Each vertex’ position is defined as a set of weights. A weight consists of a reference to
a joint, a weighting factor and a position relative to the referenced joint. This means a
vertex’ position is a weighted average of positions which are relative to the joints. When
a joint moves so do all the vertices referencing it via their weights which finally means
the polygons defined by the vertices move and may potentially deform.

The actual animation is stored as a list of frames and a frame rate at which the
animation shall be played. A so called base frame stores positions and orientations
for all joints. Each frame of the animation may replace those values with new ones.
This means every frame fully defines the position and orientation of all joints. Since
all vertices are dependent on the joints via the weights this means the position of all
vertices can be different for each frame.

The frame rate and the current time can be used to determine the two closest frames
of animation to the current point in time when rendering a new image. Interpolation
between those frames allows for smooth animations. The best results are achieved by
interpolating the joint parameters. Linear interpolation is sufficient to calculate the new
position. The new orientation is best calculated via so called spherical linear interpola-
tion, i.e. basically a linear interpolation across a circle arc. Spherical linear interpolation
is offered by modern graphics APIs as a pre-defined function. The interpolated joint pa-

37

(a) without bones (b) with bones

Figure 5.1.: An MD5 mesh rendered once without its underlying skeletal structure for
animation and rendered once with said structure. Source of the screenshots:
cubemapdemo found at KatsBits.6

rameters can then be used to calculate the vertex positions for each frame.

5.4. Voxel ray tracing

As previously explained voxels were chosen as primitives for ray tracing. While easy
to understand as being just small cubes or a 3D extension of a pixel, voxels do have
some drawbacks. A 3D grid of voxels can quickly use a lot of memory. For example a
grid of merely 256 × 256 × 256 voxels, with each voxel consisting of just a 24 bit RGB
color value with its location and size being implicitly defined by the location inside the
grid, would already require 48 MB of memory while not being very pleasant to look at
up close. Increasing the size along each dimension by just a factor 2 results in a total
increase by a factor of 8 for the memory requirement. A 10243 grid of RGB color values,
which would result in a decent image quality in many cases, needs 3 GB of memory.

But for many objects the majority of these grid cells would have to be marked as
empty anyway. So an efficient way of storing voxels is required. An SVO is a data
structure well suited for this task. Not only allows it to waste little space on empty grid
cells but it also allows for quickly tracing a ray through the space occupied by the SVO
by enabling the tracing process to quickly skip over empty space.

6http://www.katsbits.com/download/models/

38

http://www.katsbits.com/download/models/

5.4.1. Sparse voxel octrees

A sparse voxel octree (SVO) is the application of spatial partitioning via an octree
to a voxel grid. As previously explained an octree iteratively subdivides the space it
represents into smaller chunks. In the case of SVOs each node represents a cube which
encloses a part of the underlying voxel grid. The root node encloses the entire voxel
grid. A node can have either no children, e.g. if it is empty anyway, or exactly eight
children. If it does have children all of them are cubes which partition their parent into
eight chunks of equal size. Figure 3.3a illustrates this. To simplify the implementation
of an SVO it makes sense to use an axis-aligned voxel grid so that the sides of each voxel
or cube are parallel to one of the planes spanned by the basis vectors of the coordinate
system.

SVOs are unbalanced trees with nodes representing large cubes of empty space and
nodes representing small cubes of actual voxel data, e.g. RGB color values. Even though
the tree structure itself requires some memory for storing pointers the total memory
requirement of an SVO is usually much lower than storing the voxel grid directly as
most objects occupy only a small part of the grid.

5.4.2. Tree traversal

To find the first voxel in an SVO, which intersects a given ray, the intersection with
the root node has to be calculated first. If it does not intersect the root at all the ray
obviously does not intersect the object at all. If there is an intersection this point must
be used as the starting point of the tree traversal.

The most obvious way of traversing down an octree to a given point is by simply
testing for each child whether or not the point is contained within it. A more efficient
way would be to answer these three question to uniquely identify the correct child:

• is the point in the top or bottom half?

• is the point in the left or right half?

• is the point in the front or back half?

Both approaches assume that the octree represents an actual partition and that there
is no overlap between the children of each node. A modified traversal can even handle
the case when the sides of each child overlap with its siblings and the point being
traversed to is part of a ray with a known direction. By taking the direction of the
ray into account when testing all the children for containment and terminating at the
first success the correct child can be identified in the case of overlap. If the direction
vector points upwards the children representing the top half have to be tested before the
children representing the bottom half are tested and vice versa. The same is true for
the other axes, e.g. if the direction vector points to the left the children in the left half
have to be tested first. Figure 5.2 illustrates this in the 2D case. The idea is that when
a ray arrives at a point, whose containment is ambiguous, it only does so when leaving
one child and entering the other. The direction of the ray identifies which child is being

39

1

2

Figure 5.2.: A ray travelling through a quadtree node. During traversal it will reach the
ambiguous points 1 and 2, when the ray reaches the border between two
children, but the direction will determine which child is the correct one. In
this case the top children have to be tested before the bottom ones and the
right-hand children have to be tested before the left-hand ones.

left and which one is being entered. If a ray moving upwards encounters the overlapping
side of two cubes on top of each other it will only do so when leaving the bottom cube
and entering the top cube. So testing the top cube first results in correct traversal.

Once a leaf node has been found the traversal may either end and shading may be
triggered if it is non-empty or the traversal must continue of the leaf is found to be just
empty space. When continuing traversal the first intersection with one of the sides of
the leaf’s cube has to be determined. The point at which the intersection occurs can be
used to restart the traversal from the root node until the ray either leaves the tree or a
non-empty leaf is found.

5.4.3. Containment and intersection

Testing if a point is contained inside an axis-aligned cube or if a ray intersects one of its
sides are both easy tasks.

The test whether or not a point is contained within the cube can be reduced to three
tests whether a value is contained within an interval. The cube’s sides define one interval
along each axis. A point is only contained within the cube if the point’s value for each
axis is within the interval for that axis. Figure 5.3a illustrates this in the 2D case.

To find the intersection of a ray with one side of an axis-aligned cube an easy equation
results from the parameter form of a ray

x + λ · d

with vector x being a point on the ray and vector d being the direction of the ray. For
each dimension i this can be written with scalars as

xi + λ · di.

40

x1 x2

y1

y2

(a) Containment. The square defines
the intervals [x1, x2] and [y1, y2].
Only if a point’s values for each
axis is within the corresponding in-
terval it is contained in the square.

x1 x2

y1

y2

(b) Intersection. The parameter form
of a ray gives one equation to solve
for each dimension but only one
such equation is necessary to find
the intersection with a side.

Figure 5.3.: Examples of containment of points in squares and intersection of a ray with
squares.

To find the intersection with a given side its one constant value has to be identified and
set equal to the ray expression for that particular dimension. For example in figure 5.3b
the intersection with the right side of the square can be found by solving the equation

x2 = x1 + λ · d1

for λ (assuming i = 1 is the horizontal dimension) and then using λ to calculate the
actual point of intersection and test it for containment within the square (or cube in
3D).

The first side intersected by a ray starting at x and pointing in the direction d can
be identified by comparing the λ values for each intersection. The smallest non-negative
λ value identifies the first side being intersected. To also exclude x itself the smallest
positive λ has to be picked.

5.4.4. Pseudo-backtracking

Restarting the tree traversal from the root node every time is inefficient, in particular
when the correct child to pick at each node is identified via testing all children in the
correct order. Backtracking up the tree to the parent would require additional pointers
though. A compromise between restarting the traversal and true backtracking is to
use a stack to speed up the traversal restarts and so implementing a form of pseudo-
backtracking.

While traversing down the tree an identifier can be pushed onto a stack to identify
which child was chosen at which depth. A 3 bit identifier is sufficient. One bit indicates

41

whether the child belongs to the top or bottom half, another bit indicates whether the
child belongs to the left or right half while the last bit indicates whether the child belongs
to the front or back half. This is a minimal way to uniquely identify each child.

When encountering an empty leaf node the cube side which is intersected first can be
used to identify which identifiers have to be removed from the stack for the next iteration.
For example if the right-hand side of the cube is intersected first every identifier that
also indicates the right half has to be removed up to the first one that does not. This
identifier belongs to the first node at which the traversal will differ. This identifier will
indicate the left-hand side, yet the next iteration will choose the corresponding child on
the right-hand side. So the left/right bit of this identifier must be flipped. This works
analogously for every other cube side.

The next iteration can then use the stack, if it is not empty because the same side
was chosen at every node in the previous iteration, to quickly traverse the tree to the
first child that is different and then continue traversing down as before.

5.4.5. Depth buffer

Usually ray tracing does not require a depth buffer. But when rendering different objects
using different approaches a depth buffer must both be taken into account and updated
even when rendering via ray tracing. The depth of a given voxel can be determined by
transforming the point used for traversing down the octree in the same way as vertices
of polygons are transformed before rasterization. Assuming the depth of the vector
(x, y, z) shall be calculated then (x, y, z, 1) has to be multiplied with all the matrices
used to transform a vertex from object/model space to world space to camera space and
finally to screen space. This results in a vector (x′, y′, z′, w′). The depth of the voxel is
then simply

detph =
z′

w′
.

This last division is a step that can not be expressed in the matrices themselves and is
usually performed automatically by the GPU without the application developer having
to specify this.

Comparing the voxel’s depth to the corresponding one in the depth buffer can be done
at two times during the traversal. Every time before an iteration of traversing down is
started the depth of the point used to traverse can be calculated and compared to the
existing depth. By doing the depth test this early unnecessary tree traversal iterations
can be avoided. But this also implies that the matrix-vector multiplication to compute
the depth has to be performed several times per ray traced pixel.

Alternatively the depth test can be delayed up to the point when a non-empty leaf
node is found. By doing so the depth only needs to be computed once but potentially
unnecessary tree traversal iterations have to be performed.

42

(a) Original camera po-
sition and size

(b) Camera moved to
the left

(c) Image plane’s size
was reduced

Figure 5.4.: An example of how camera motion can induce motion in the scene. Also
reducing the image plane’s size has an effect. It makes objects appear larger.

5.4.6. Transformations

As previously mentioned some kinds of transformations such as translation, rotation and
scaling can also be applied to ray traced SVOs without having to change the underlying
data structure at all. Basically any transformation that is invertible can be applied.

The camera’s position and the corners of the image plane form a pyramid. This
pyramid can be used to determine the starting point and direction of each ray to trace
such that there is exactly one ray for each pixel on the screen. As with a real camera
movement of the camera itself induces an inverse effect in the scene. This is shown in
figure 5.4. With a virtual camera even more effects are possible such as reducing the
size of the image plane which makes everything appear larger.

By exploiting this behavior almost arbitrary transformations can be applied dynam-
ically at runtime to SVOs. A world matrix with all the transformations applied to the
SVO must be maintained. Before rendering the inverse of this matrix is applied to the
points forming the “camera pyramid”. This new pyramid is then used to determine each
ray’s starting point and direction. After rendering is finished it will appear as if the
transformations had actually been applied to the SVO.

The only limitation is that every transformation itself must be invertible. This follows
from

(A ·B)−1 = B−1 ·A−1

for matrices A and B. The final world matrix, after all transformation have been applied
to via multiplication, is only invertible if each transformation was invertible to begin
with.

5.5. Generating voxel octrees

Most 3D graphics application nowadays use polygons and rasterization. While it is more
or less easy to find free polygon mesh examples for testing it can be rather difficult to
obtain example voxel data. For this reason a conversion from textured polygon mesh

43

to an SVO storing RGB color values for each non-empty voxel is also proposed in this
thesis.

5.5.1. Building an octree

An octree can be build via constructing a root node, splitting it into children and recur-
sively repeating this process until a termination criterion is reached such as a maximum
depth.

The root node can be constructed by finding the smallest cube enclosing the model
and placing it so that the center of the cube and the center of the model are in the
same place. The cube should also be axis-aligned. For performance reason it makes
sense to maintain a candidate list for reach node. This list contains every triangle that
intersects the node. In case of the root node this means that every triangle is added to
its candidate list.

During the recursive tree building each potential child of the current node is created.
For each child an intersection test with all the triangles from its parent’s candidate list
is performed to see if any triangle intersects the new child. Any intersecting triangles
are then added to the child’s candidate list. If at least one child is not empty the parent
node is actually split up by keeping the children in memory and storing their pointers
in the parent node. The tree building then continues recursively with the children.

This algorithm ensures that only non-empty nodes (= cubes/voxels) are split up fur-
ther and the lack of a valid child pointer indicates that a node is a leaf. The candidate list
also allows to quickly decide with which triangles intersection tests have to be performed
at all and so improves the performance of the algorithm.

5.5.2. Intersection test

Checking whether a triangle intersect a cube is far more involved than checking whether
a ray intersects it. But triangle-cube intersection can be broken down into a series of
ray-plane intersection tests for the purpose of creating an SVO.

The intersection of a triangle and a cube is plane segment in general. To determine
the color values of each voxel later it is sufficient to know the positions of the corners
of this plane segment without actually computing its other properties such as area or
orientation.

Each triangle’s position relative to any given cube is arbitrary. It may lie completely
inside the cube. One or two vertices may lie inside the cube but not every one of them.
Or all vertices may lie outside of the cube yet there may still be an intersection, e.g. a
triangle which would cut the cube into two halves must be larger than the intersecting
plane segment and may even be so large that none of its vertices lie within the cube
itself.

To account for all these possible cases while only being interested in the corners of
the intersecting plane segment the problem can be reduced to a series of ray-plane
intersections. Each pair of vertices of a triangle forms a ray. Let the vectors x and y be

44

such a pair. Then they define a ray in the form

x + λ · (x− y)

with λ ∈ [0, 1]. These are rays which can be tested for intersection with a cube the same
way as it is done during tree traversal when rendering an SVO. The only added criterion
is that λ values outside of [0, 1] can be ignored as they are not part of the ray formed
by the vertices.

The same trick can be used to test the cube’s edges for intersection with the triangle.
Any pair of cube corners also form rays in the same way the vertices of the triangle do.
But not all pairs have to be used to construct rays to intersect with the triangle. Only
those pairs which do not require diagonal movement to get from one corner to the other
one.

However the intersection of a ray with an arbitrary plane is not as easy to calculate
as is the intersection with an axis-aligned cube. The most convenient way to do this is
to use the point-normal form of a plane. If x is a known point on the plane and n is
its normal, which can easily be computed with a cross product, then a plane is uniquely
defined by all vectors p which satisfy the equation

(p− x) · n = 0.

The intersection with a ray
p = y + λ · d

is defined by the λ value which satisfies

(y + λ · d− x) · n = 0.

Solving this equation for λ results in

λ =
(x− y) · n

d · n
.

If the denominator of this equation is zero the ray either lies within the plane, a case
which can be safely ignored for the purpose of building an SVO, or it does not intersect
it at all. For any non-zero denominator λ can be calculated and using this λ the actual
point at which the intersection occurs can be computed.

A triangle is not a plane which extends into infinity. This means after finding the
intersection another check has to be performed to find out if the intersection is actually
within the area of the triangle. This is can be done easily with the parameter form of a
plane. Let the vectors x, y and z be the corners (vertices) of a triangle, then they span
a plane in the form

p = x + λ · (y− x) + µ · (z− x)

with λ, µ ∈ [0, 1] and λ+µ <= 1. This is a linear equation system with three equations,
one for each dimension, and two unknown variables, namely λ and µ, if p is set to the
point of the intersection. For any true triangle, meaning with x, y and z being pairwise

45

different, this linear equation system has a unique solution. After solving this equation
system the properties of λ and µ can be used to determine if the intersection is actually
within the area of the triangle.

This series of intersection tests will identify all corners of the plane segment that is
the actual result of intersecting a triangle with a cube.

5.5.3. Computing the color information

Computing each node’s color is a task that is best performed recursively as well. After
the whole tree has been built each inner node determines its own color by averaging the
color of all non-empty children. Empty leaf nodes do not actually need a color but they
need to at least set a flag indicating that they are empty.

Computing the color of a non-empty leaf works by reusing some of the concept from
the intersection tests. In order to take a filtered sample from a texture the proper texture
coordinates have to be known. These can be calculated for each intersection by using
the parameter form of a plane. The same λ and µ values used to determine whether
an intersection is inside a plane can be used to calculate texture coordinates for said
intersection. Each vertex of a triangle has texture coordinates associated with it. These
coordinates can be used to span a plane

p = x + λ · (y− x) + µ · (z− x),

too. Here x, y and z are not the positions of the vertices but their texture coordinates
instead. Using λ and µ calculated from the plane spanned by the positions allows one
to calculate a texture coordinate p for each intersection.

With the texture coordinates obtained this way a filtered sample, e.g. using a simple
bilinear filter, can be taken for each intersection. A non-empty leaf’s color can then be
computed as the average of all the samples.

5.6. Recap

This chapter introduced an actual hybrid renderer on a theoretical level. The renderer
works by rendering each object using an approach appropriate for it. Animated objects
which need to deform are rendered using the common rasterization of polygons. Every-
thing else is rendered using ray traced voxels which are stored in an SVO in order to gain
the advantages of ray tracing, namely easier lighting and rendering of volumetric effects,
for as many objects as possible. Maintaining a depth buffer even when performing ray
tracing allows for rendering objects in an arbitrary order and still get proper occlusion.
Also post-processing algorithms may potentially take advantage of the depth buffer as
its content is always in a valid state.

Also an algorithm for generating SVOs from textured polygon meshes has been pro-
posed. This allows for easy acquisition of test data and may also be useful for content
creators as they do not have to learn to use new tools but can create content such as
meshes in their familiar tools and then convert those to voxel data.

46

6. Implementation

After explaining the hybrid renderer on a theoretical level in the previous chapter this
chapter will describe its implementation. This includes discussing the technologies used
and any supporting tools developed such as the tool for converting polygon meshes to
SVOs.

The chapter will start by describing the tools and file formats used by the implemented
software. This will also include details on what information is stored in memory for each
object at runtime. After that follows a description of the hybrid renderer itself, which
technologies it uses and what its features and limitations are. The chapter ends with a
discussion of floating-point number precision, which turned out to be a problem in some
cases, and a short recap.

6.1. Tools and file formats

In order to gain a better understanding of the implementation of the renderer itself it is
helpful to understand the structure of the data files and how they were obtained.

6.1.1. File formats

In total five different types of file formats are used by the renderer and its supporting
tools. Two formats for polygon meshes, two formats for textures and one format for
storing an SVO.

The two polygon mesh formats are ASE and MD5. Both are in ASCII format and
allow the raw data to be viewed in a common text editor. ASE is a format used by the
3D modelling software 3D Studio Max.7 As mentioned in the previous chapter MD5 is
the format used by the video game Doom 3 for its characters.

ASE specifies a mesh as a lists of triangles and vertices. Each triangle consists of
three indices which point to the vertices defining the triangle. There are actually two
lists of triangles and two lists of vertices. One pair of lists define the positions of each
vertex while the other pair of lists describe the texture coordinates. This allows meshes
to reuse vertex positions with different texture coordinates depending on which triangle
the position is used for. ASE files also specify a lot of additional information such as
normals, lighting parameters, etc. but those were mostly ignored by the supporting
tools. Only the triangles, vertex positions, texture coordinates and texture file name
were used. The renderer itself does not use ASE files directly at all. The texture
information is stored in separate image files in the TGA format.

7http://www.autodesk.com/products/autodesk-3ds-max/overview

47

http://www.autodesk.com/products/autodesk-3ds-max/overview

MD5 uses two ASCII files to store its information. One file, the so called mesh file,
stores the geometry of the mesh together with information about texture mapping and
the skeletal structure for animation. The other file, called anim file, stores the animation
data. An MD5 mesh may be made up of several submeshes. The mesh file stores all
these submeshes as a list. Each entry in that list consists of a texture name and three
lists, triangles, vertices and weights. The triangle list which stores indices into the vertex
list. Each vertex consists of texture coordinates and a pointer into the weight list which
specifies a set of weights. The weights are responsible for defining a vertex’ position based
on the skeletal structure as described in chapter 5 when discussing the rasterization part
of the hybrid renderer. The mesh file already fully defines an non-animated version of
the polygon mesh. This default pose of the polygon mesh is called the bind pose and
it is the same pose the model creator chose when creating the model. The anim file
contains the frames of animation mentioned in chapter 5. MD5 also uses TGA images
to the store the textures. MD5 does not store normals. These have to computed while
loading the mesh.

These two mesh formats were picked because information on parsing them was easy
to find on the internet as well as example meshes which can be used for free. For testing
the hybrid renderer two models from a website called KatsBits8 were used, namely a
medieval character called Bob and an appropriate background looking like a part of a
medieval castle. These two meshes are shown in figure 6.1.

The two image formats used are TGA and DDS. Neither format was parsed manually.
A free image loading library simply called stb image.c9 was used to load the TGA files
and a library called DXUT was used to load the DDS files. DDS is a format specifically
for use with DirectX as it natively supports texture compression formats that modern
GPUs can decompress in real-time when reading texture samples.

The format used for storing SVO files was a self-developed one. A simple binary format
was chosen. It begins with the size of the root node as 32-bit floating-point number.
Since each node is a cube a single number is sufficient as the length and height of all
sides is equal. The position of the center of the root is implicitly assumed to be (0, 0, 0).
By applying transformations at runtime the SVO can be moved to any arbitrary location
as desired. The size is followed by the color and child information for the root. Each
node is represented by two 32-bit words in the file. The first 32-bit word is an RGBA
color value with the alpha channel being used to indicate that a note is empty (α = 0).
The second 32-bit word is the offset in bytes of the first child in the file. For example
if an offset specifies address 200 (in decimal) then the first child can be found 200 bytes
from the beginning into the file. All children are always written in the same order and
in one 8 · 64 = 512 bit chunk. This way the order implicitly defines which part of the
space belongs to which child. Offsets of 0 indicate that a node is a leaf.

8http://www.katsbits.com/download/models/
9http://nothings.org/stb_image.c

48

http://www.katsbits.com/download/models/
 http://nothings.org/stb_image.c

(a) Bob in bind pose
(b) One of Bob’s

textures

(c) background (d) wall texture

Figure 6.1.: Example meshes and textures from KatsBits8.

49

6.1.2. Tools

Two supporting tools to accompany the hybrid renderer were written. The first tool is
a conversion tool from the ASE format to the MD5 format. This tool was written so
that every other tool and the renderer only have to be able to parse one single format,
namely MD5, and still be able to load every mesh. The conversion tool constructs a
single, non-rotated joint in the origin of the coordinate system. Each vertex position
from the ASE file is converted to a single weight in the MD5 file. Each unique pair of
position and texture coordinates from the ASE file is converted to a vertex pointing to
the appropriate weight in the MD5 file. During this conversion a mapping of (position,
texture coordinate) pairs to vertex indices is created. This mapping is then used to
create the triangle list for the MD5 file. No MD5 anim file is created so that the ASE
model only exists as MD5 mesh in bind pose after the conversion is complete.

The second tool is the SVO construction tool. It reads the bind pose of an MD5 mesh
and converts it to an SVO stored in the format described in the previous subsection.
The tool can create octrees up to a specified depth and also measure the time required
for its various steps.

6.2. The hybrid renderer

The main program, which was developed, is the hybrid renderer itself. It is a program
being able to render objects via rasterization and via ray tracing. It uses to the system’s
GPU for fast rendering in both cases.

6.2.1. Technologies

The hybrid renderer was developed on a Microsoft Windows 8.1 Pro 64-Bit PC using
Microsoft Visual Studio Ultimate 2013. The hybrid render and its accompanying sup-
port tools were written in C++. To access the GPU DirectX 11 was used. From this
follows that all the shader code was written in the High-level shader language (HLSL).
DirectX 11 was also used for most of the operations performed on vectors, matrices and
quaternions as it offers a large collection of useful functions for creating and manipulat-
ing these objects. Textures and their required DirectX 11 API objects were created via
DXUT10, a helper library to make using DirectX 11 even easier. This library also pro-
vides GUI functionally which was used. The target platform of the hybrid renderer was
a 64-bit Windows-based PC with a GPU that supports DirectX 11 and Shader Model
5.0. This choice allowed for an implementation with little technological limitations such
as low memory limits or no control flow in shader code.

6.2.2. Rasterization

The rasterization part of the renderer is a straight forward implementation of rasteriza-
tion. DirectX 11 API functions were used as much as possible to set up a render target

10https://dxut.codeplex.com/

50

https://dxut.codeplex.com/

(buffer representing the screen), depth buffer, vertex buffers, transformation matrices,
etc. In the end each vertex processed by the GPU consist of a position, a normal and
texture coordinates. A vertex shader written in HLSL transforms the position to screen
space, the normal to world space and passes on the transformed vectors and the texture
coordinates to the (non-programmable) rasterization part of the GPU. This part is re-
sponsible for performing depth tests, so that no pixel is overwritten if the new triangle is
occluded by the existing data, updating the depth buffer and triggering a pixel shader,
also written in HLSL, where appropriate. This pixel shader receives the information
passed on from the vertex shader but in interpolated form. This means the pixel shader
can use the texture coordinates it receives directly to read a filtered texture sample. This
sample could then be modified depending on the interpolated normal and the lighting
conditions. However no lighting is implemented and so the pixel shader simply outputs
the sampled color. This also implies that only one texture is sampled from per polygon.
No lightmaps or similar texture mapping techniques are used.

6.2.3. Ray tracing

Ray tracing of SVOs was implemented twice. The first implementation only utilized the
CPU and was created for easy testing and debugging. It partitions the screen into four
quadrants and uses one thread to render each quadrant. This significantly increases its
performance on multi-core CPUs as long as the rendered object is in the center or near
the center of the screen.

Later a GPU implementation of the ray tracing was created. It works by sending
two triangles to the GPU which cover the entire screen. These triangles have texture
coordinates set up in a way that the coordinates can be used to address individual pixels
in the pixel shader used to render them. Both components of the texture coordinates
range from 0 to 1. The first component addresses the horizontal axis with 0 being the
left most column and 1 being the right most column of the screen. Analogously the
second component address the vertical axis with 0 being the top most row and 1 being
the bottom most row.

Both the CPU and GPU implementation implement ray tracing in the same way for
each pixel. After the pyramid formed by the camera position and image plane corners
was transformed by the inverse transformation matrix, a bilinear interpolation between
the four image plane corners is used to calculate the starting point of the ray for each
pixel. The difference between starting point and camera position defines the direction
of each ray. With these two vectors, the starting point and the direction, the ray tracing
is performed as described in chapter 5.

Both implementations are able to either perform early depth tests (before every down
traversal iteration) or late depth tests (once an opaque leaf node is found). Either option
has to be chosen when loading the SVO. This is due to the implementation on the GPU.
It uses slightly different pixel shaders to implement each option and which pixel shader
is loaded is decided when loading the SVO itself.

The proposed ray tracing algorithm requires a stack for increased performance. Man-
aging a list is both expensive in terms of operations and memory. This is particularly

51

bad for the GPU implementation as it needs to reserve this memory for all pixels at
the same time because they are traced in parallel. Due to these reasons a single 64-bit
variable (or two 32-bit variables as is the case for the GPU version) and an integer are
used as a stack. Bit operations are used address individual segments of the 64-bit vari-
able. Since each element on the stack, an identifier of a child, needs only three bits the
variable is large enough to hold a stack of 21 values. This puts an upper limit on the
maximum tree depth. A tree of that depth would still be able to store a voxel grid with
more than two million (221) entries along each dimension which is still more than enough
for current applications. The integer used in addition to the 64-bit variable holds the
size of the stack.

Updating the depth buffer works slightly differently for both implementations. The
CPU version copies the depth buffer to its own memory space, updates it locally during
the tracing process and then copies the updated buffer back to the GPU. The GPU
implementation uses the depth buffer as a texture. For each pixel the current depth is
read and potentially updated. Either the existing or the new depth value is then written
to a separate buffer as the depth buffer can not be written to and read at the same
time. After the ray tracing is finished the content of the buffer containing the new depth
information is copied to the real depth buffer.

6.2.4. Depth visualizer

Another feature of the hybrid renderer is the ability to visualize the depth buffer. This
feature is implemented mostly on the CPU as it is only relevant for debugging. Just
like the CPU implementation of ray tracing a copy of the depth buffer in CPU memory
is created. The CPU then computes the minimum and maximum depth values while
ignoring the background, which is all pixels with depth equal to 1. These two values are
then used to create an image which is white at pixels with minimal depth and black at
pixels with maximum depth. All background pixels are fully transparent. This image is
then used as a texture by a vertex and pixel shader combination which works similarly
to the ray tracing GPU implementation. Two triangles, which cover the screen, are send
through the GPU pipeline to copy the content of the texture onto the screen. The result
of the depth visualizer is illustrated in figure 6.2. It was used during development to be
able to visually assess the correctness of the content of the depth buffer after ray tracing.

6.2.5. Demos

The hybrid renderer includes four hard-coded demos. Each demo is a sequence of 101
frames with pre-defined camera positions and time values for the animation. These are
useful in comparing the performance of the renderer with regard to different settings.
Each demo represents a typical kind of camera motion. The last 50 frames of each demo
are the first 50 frames in reverse order. The first demo is a panning motion from right
to left and back again. The second demo is a zoom into the scene, in particular to a
character. The remaining two demos rotate the camera. One demo moves the camera
along a half circle with the location it is looking at fixed at the center. In the last demo

52

(a) Without depth visualizer

(b) With depth visualizer

Figure 6.2.: The same scene once with the depth visualizer turned off and once with the
depth visualizer turned on.

53

Figure 6.3.: The GUI which allows the user to change scene and render parameters at
runtime.

the camera stays fixed in one location and rotates by 360 degrees.

6.2.6. Parameters and GUI

As its basic setup the renderer shows a scene with a single character in front of a back-
ground. The background is rendered as a ray traced SVO by the GPU while characters
are rendered as animated polygon meshes. A GUI allows to the user to add more char-
acters. The locations of these additional characters is fixed and some are intentionally
placed behind the background object. Also the maximum depth of the background SVO
can be chosen at runtime, as can the ability to render it via the CPU or to enable early
depth tests. The order in which characters and background are rendered can be changed,
too. The depth visualizer can be toggled on and off. Each demo can be played back.
All of these options can be chosen at runtime via a GUI in the upper left corner of the
screen as shown in figure 6.3. The only parameter which can not be chosen at runtime is
the screen’s resolution. This can however be specified as commandline argument when
launching the program.

6.2.7. Benchmarking

The hybrid renderer can perform automated benchmarking. It does so by iterating over
all the parameters available in the GUI. Each demo is played ten times with each possible
combination of settings. During playback the times to render each frame are measured
and logged. Since the CPU and GPU run asynchronously it is hard to measure the
time individual operations need on the GPU. Measuring the time it takes to render the
frames still allows one to make a relative comparison between features. For example
the exact times to perform ray tracing are not known but by comparing runs with early
depth test to runs with late depths the faster implementation can still be determined.
Also repeating each run ten times and then averaging the times and removing obvious

54

outliers allows to rule out outside influences, such as services running on the computer,
on the measured times.

6.2.8. Limitations

The way the SVO is constructed and stored combined with the way it is rendered pro-
duces results similar to using a nearest neighbor filter to read samples from a texture
without mip-mapping. One artefact produced by this is aliasing. This could be remedied
by modifying the ray tracing algorithm to terminate at a lower depth depending on the
current node’s size with regard to the screen. Once an opaque node is reached that is
roughly as large as one pixel from the point of view of the camera the tracing process
should terminate.

Another artefact is that the voxels themselves become visible as cubes with a single
color if the camera moves so close to the SVO that even the voxels at the highest depth
become larger than a pixel. This could be remedied by blurring the picture at those
locations. The proper regions to blur can be identified by using another buffer in which
each ray writes whether the resolution of the SVO was sufficient for its pixel location or
not.

Another obvious limitation is the lack of secondary rays. The scope of this thesis was
to implement a proof of concept renderer first. If viable, future works can then add
onto this implementation and evaluate the viability of hybrid rendering with regard to
advanced lighting, volumetric effects or other advanced rendering techniques.

6.3. Floating-point precision

Floating-point numbers only have a limited precision as every programmer and every
computer scientist knows. In many applications this does not pose a problem. During
development of the hybrid renderer this turned out to be a problem in this case though.
Sometimes the ray tracing algorithm would not terminate because it got stuck in an
endless loop traversing down the same path of the tree over and over again due to not
updating the point to traverse to properly. SVOs sometimes contained triangle-shaped
holes due to the candidate list missing an entry which was mistakenly rejected at a lower
depth. Figure 6.4 shows an example of this problem.

The solution was to avoid recalculating floating-point values when possible and to
allow some slack at boundaries, e.g. by treating −10−7 as if it was larger than 0. These
are standard tricks to avoid precision problems and in the case of creating and rendering
SVOs it is actually necessary to use them.

Two places were identified to cause the most issues. One is the calculation of the point
of intersection between a ray and an axis-aligned cube. When doing so the equation (or
an analogous one for a different dimension)

y1 = x1 + λ · d1

55

(a) Wall segment with triangle-shaped hole (b) Wall segment as it was intended

Figure 6.4.: Due to the limited precision of floating-point numbers some intersections
are mistakenly rejected. This causes some candidate lists to miss an entry
when building the SVO which in turn produces a hole in the object.

is used to calculate a value for λ. The resulting point of intersection should be set to y1
x2 + λ · d2
x3 + λ · d3

instead of x1 + λ · d1

x2 + λ · d2
x3 + λ · d3

and this point should be stored and reused as is when necessary. Even though both
vectors are mathematically the same they may differ in the first component due to
floating-point numbers not being infinitely precise.

The second place that caused a lot of problems was the calculation of the texture
coordinates when building the SVO. In order to calculate those the parameter form of
a plane is used to calculate the values λ and µ which have to satisfy certain properties
such as being non-negative as explained in chapter 5. When checking those properties
a small amount of slack should be allowed in order to not mistakenly remove triangles
from a child’s candidate list. While this alone does not fix all holes (other locations with
similar boundaries checks are affected as well) it fixed the majority of holes.

56

6.4. Recap

This chapter explained how the hybrid renderer proposed in the previous chapter was
implemented. Based on DirectX 11 the implementation is able to rasterize and ray
trace on a GPU. After rendering each object, including those that are ray traced, the
depth buffer is in a valid state reflecting all the content that is on screen. Floating-point
precision, though not an issue in many applications, actually turned out to be a source
of problems when creating and rendering SVOs.

57

7. Evaluation

This chapter serves as an analysis of the hybrid renderer’s implementation. The bench-
mark features of the renderer and the SVO creation tool were run on two separate
systems. The beginning of this chapter describes these two systems. This description
is followed by details on the test data, namely how many polygons and vertices the
original polygon meshes consisted of, how long it took to convert the background into
an SVO and how much memory was required for each object. This is then followed by
a rendering benchmarks and a discussion thereof. Like the preceding chapters the end
of this chapter briefly summarizes its content.

7.1. Test setup

Both test systems ran Microsoft Windows 8.1 Pro 64-bit. One test system was build as a
cheap low-end systems while the other was intended to be an expensive high-end system.
Both systems were set up for regular use which means they had software installed such as
third-party anti-virus software, third-party firewall software and other tools a user might
use such as a browser, e-mail cient, office package and a tool to synchronize files with a
cloud storage. During benchmarking no other software was running except for services
which run as background tasks. The anti-virus and firewall processes were terminated
completely for the benchmarks. The actual hardware configuration of each system can
be found in table 7.1.

7.2. Polygon meshes

Two polygon meshes were used to construct all the test cases. Bob, the medieval char-
acter, was already available in the MD5 format and the accompanying background was
converted into the same format. Table 7.2 shows how many primitives each mesh was
made of in said format. It also shows how much memory was used on the CPU, including
all pointers etc., and how much memory was used on the GPU. The GPU only needs
parts of the data as animations are computed on the CPU and the modified vertices are
then send to the GPU.

The background was not actually rendered as polygon mesh and the values in the table
indicate how much it would have required if it was rendered as such. The implementation
does not support instancing properly and so the costs for the character are per instance
of him being loaded.

The Bob mesh uses five textures, one with a resolution of 512x512, one with 512x256
pixels and three textures with a 256x256 resolution. Using DXT1, a block compression

58

Component Low-end system High-end system

CPU AMD A10-5800K Intel Core i5-4670
(4x 3.8 GHz) (4x 3.4 GHz)

CPU RAM 2x 4GB DDR3 2x 8GB DDR3
(2133 MHz) (1600 MHz)

GPU AMD Radeon HD AMD Radeon R9 290
7660D (800 MHz) (1040 MHz; overclocked)

GPU RAM shared with CPU 4GB GDDR5
(1250 MHz)

Mass storage 500GB SATA HDD 500GB SATA SSD
(7200 rpm)

Table 7.1.: Test systems for benchmarking. The low-end system was also used for devel-
opment. The GPU used in the high-end system is known to underclock itself
if it gets too hot. It was sufficiently cooled to prevent this.

Bob background

no. of joints 33 1

no. of submeshes 6 3

no. of vertices 880 215

no. of triangles 1027 249

no. of weights 1264 194

no. of frames 142 0

memory (CPU) 219782 20652
[in bytes]

memory (GPU) 34322 8374
[in bytes]

Table 7.2.: The properties of the two polygon meshes which were used in creating the
test scene.

59

format natively supported by DirectX 11 GPUs, 4 bit are required for each pixel. Also
accounting for mip-maps this means the textures for this mesh need 384 kB of memory
on the GPU.

The background uses two textures with 256x256 pixels and one texture with 512x256
pixels. Using the same compression and also generating mip-maps means that the tex-
tures for this mesh would require 171 kB GPU memory if rendered via rasterization.

7.3. Sparse voxel octrees

The background, as a static object, was converted into an SVO and rendered as such.
For testing purposes Bob was converted as well. Each mesh was converted to SVOs with
the maximum depths 8 to 11 ten times. Unless otherwise noted the results shown are
averages of these ten iterations.

7.3.1. Creation time and file size

Figure 7.1 shows the time spent on the various steps during SVO creation in relation
to each other. The majority of the time was spent on actually building the SVO which
means on performing intersection tests and splitting up cubes into smaller ones. Com-
puting the colors, storing the result in a file and freeing up the used memory were the
only other steps which required any significant time. Each of those tasks required almost
the same amount of time. The relative distribution of the time required for each task
varies only little with regard to the maximum tree depth.

Table 7.3 lists the total amount of time required to build the SVOs as well as their
file sizes. The time required to convert a polygon mesh to an SVO, especially for the
more detailed SVOs, was high enough to require pre-computing the conversion. Storing
each object only in their polygon mesh form and doing the conversion on start-up was
no viable option even though there are only two different kinds of object in the scene.
But the conversion times were still low enough to be done in a very reasonable amount
of time when creating new content for an application.

Slow conversion means that the file sizes become very relevant as any application
which wants to use SVO ray tracing has to include the pre-computed SVOs when being
distributed. Looking at the file sizes, in particular those needed for the trees with
the highest depth, this means that the total file size of the application grows rather
quickly with each unique object added. This means large local storage costs for users
and potentially long download times when distributing the application digitally, which
becomes an increasingly popular method of distribution.

The file size also reflects the amount of memory required by the renderer at runtime.
The renderer uses the exact same bit stream as is stored on the hard drive by loading
the file as one large binary object. Individual 32-bit words of this binary object are
then addressed as required during tree traversal. This object resides in the memory of
the same processing unit that also performs the rendering. Modern GPUs have multiple
GBs of RAM but even a handful of SVOs may already fill the RAM completely. This
means an application which uses SVOs for more interesting scenes needs to find a clever

60

(a) maximum tree depth = 8

(b) maximum tree depth = 11

Figure 7.1.: Relative amount of time spent on the various steps during SVO creation of
the background on the high-end system. The distribution is almost inde-
pendent of the maximum depth.

61

mesh depth Low-end system High-end system file size

Bob 8 0.698 0.377 1.7

Bob 9 2.141 1.080 7.0

Bob 10 6.953 3.760 28.2

Bob 11 27.340 14.946 113.1

background 8 0.458 0.246 1.5

background 9 1.668 0.791 6.0

background 10 5.489 2.993 24.1

background 11 22.255 12.243 96.4

Table 7.3.: Total time in seconds required to build the SVOs on each system. The
resulting file sizes in MB are included as well.

way of streaming only the relevant data to the GPU without copying every single object
fully into the GPU’s memory.

An interesting fact to observe is that conversion times and file sizes increase roughly
by a factor of 3-4x when increasing the depth by one level. In particular the file sizes
increase by a factor very close to 4x every time. This points at every other child node
being empty with work (intersection tests, color computation, etc.) only continuing for
four out of eight children each time a node is split up. This can be explained by the
nature of the data being converted. Polygon meshes are sets of polygons with each
polygon describing a 2D surface in a 3D space. This means each polygon could actually
be described by an orientation, location and a quadtree. Quadtrees are 2D version of
octrees and only have four children per node.

This leads to the question of how much redundancy there is in an SVO file. Using
the free compression tool 7-Zip11 this can be quickly and easily evaluated. Compression
all eight SVOs to the ZIP format using the “Maximum” compression level results in a
reduction in file size by 80.3%. Using the 7z format instead increases the reduction to
87.5%. On the one hand this means that an application using SVOs can actually be
reasonably distributed in a compressed format. On the other hand it means that a lot
of memory is actually wasted at runtime despite an SVO already being far more efficient
than simply storing a full voxel grid. Using the values for depth = 11 from table 7.3 the
SVOs already need less than 1% of the space a full voxel grid of 20483 = (211)3 voxels
would need.

7.3.2. Memory usage during conversion

While not systemically measured the memory usage of the conversion tool’s process was
observed during development. The memory usage can quickly rise up to several GBs, in
particular when creating deep trees. When trying to create an SVO with maximum depth
set to 12 the process actually began to swap pages from the physical memory to the hard
drive on the low-end system. This is an indicator that the conversion algorithm, while

11http://7-zip.org/

62

http://7-zip.org/

reasonably fast in all evaluated test cases, could slow down significantly when creating
even more detailed models than have been created for this evaluation due involvement
of the slow mass storage device of the system. Further tests were not performed because
the low-end system repeatedly crashed when trying to create more detailed trees and
existing data already was sufficiently good to draw conclusions about the behavior at
higher levels of detail. The reason for the crashes was most likely a defect in the HDD
controller or the HDD itself as performing lots of I/O operations caused the system to
become unstable even when using other applications.

7.4. Rendering

The core of this thesis is the hybrid renderer. The test scene shows an animated medieval
character, Bob, on an appropriate medieval background. The test scene always renders
one SVO for the background and one, three or eight characters in addition to that. In
scenes with one or three characters all character are in front of the background. Since
real scenes may include characters which are in the vicinity and so send to the GPU for
rendering but who are occluded by other objects, choosing to render eight characters
results in five of those characters being placed behind the background object. To measure
the performance of the renderer the built-in benchmarking feature, which iterates over
all possible settings and plays every demo with each combination of settings ten times,
was used. The results presented in this section are always an average of the ten iterations
unless noted otherwise. The demos are numbered 1 through 4 with 1 being the panning,
2 being the zoom, 3 being the rotation along the half circle and 4 being the stationary
rotation as described in the implementation chapter.

In addition to evaluating performance a subjective image quality evaluation was done.
The only parameter which affects image quality is the maximum depth of the SVO
and so the evaluation was done by comparing screenshots rendered with different depth
settings.

7.4.1. Performance

The performance was measured as elapsed time to render a frame. A measure for perfor-
mance usually used by users, such as gamers, is the frame rate. Typically anything below
30 FPS is perceived as not smooth. This value is a little higher than frame rates common
in cinema (24 FPS). This difference comes from the fact that 3D graphics rendered in
real-time often lack motion blur and so are perceived as less smooth. Additionally some
users, especially gamers who play action-oriented or rhythm games, even demand frame
rates of 60 FPS and in rare cases even more than that. This means if a frame takes
more than 33.3ms (30 FPS) to render the result is not acceptable as it lacks smoothness.
Times below 16.7ms (60 FPS) are desirable.

Table 7.4 shows the worst case performance at the lowest detail level at a fairly low
resolution of 640x480 pixels. When rendering the background first early depth tests
are actually not useful. But they were enabled to test the worst case performance and
because early depth tests and the render order have little impact on the performance

63

low-end system high-end system low-end system high-end system
demo (CPU) (CPU) (GPU) (GPU)

min avg max min avg max min avg max min avg max

1 79.5 300.4 447.5 49.8 157.9 232.5 16.4 73.8 122.7 1.3 4.1 7.5

2 268.8 432.6 545.0 130.6 201.2 260.8 52.1 109.1 165.3 2.5 5.4 8.4

3 271.1 329.2 411.6 133.1 164.6 200.4 78.6 96.4 115.7 4.0 5.0 6.8

4 258.6 368.6 517.3 133.7 178.4 230.5 38.4 72.6 114.5 1.9 3.9 6.6

Table 7.4.: The rendering peformance on both systems. Minimum, average and maxi-
mum times are shown for each demo and for rendering the SVO on either the
CPU or the GPU. All times are in milliseconds. A resolution of 640x480 was
chosen with the other settings set to SVO depth = 8, early depth testing, no.
of characters = 1, background rendered first.

anyway as shown later. The results show that CPUs are not suitable for ray tracing
SVOs at all. Even the high-end system could not achieve a smooth performance under
the best of circumstances and an improvement by a factor of more than 5 would be
necessary. While the low-end system struggled to achieve smooth frame rates even when
rendering completely on the GPU, the results for the high-end system look promising.
Even the worst times are far below the limit of 16.7ms indicating that there is room for
more details. The difference between the GPU performance on both systems is rather
interesting as well. The high-end system is faster by a factor of almost 20 even though it
has neither 20 times the shader performance nor 20 times the memory bandwidth. The
conclusion of this test is that anything but a high-end GPU is incapable of performing
SVO ray tracing in real time at this time.

The next test focused on level of detail, namely resolution and tree depth. The results
are displayed in table 7.5. Demo 2, the zoom, performed the worst out of all four
demos regardless of resolution and tree depth. This may be due to the fillrate, how
many texture samples can be read and how many pixels can be written to the screen,
becoming a bottleneck once the camera is close to the character it zooms to. Aside from
this outlier the other demos all had similar performance with the times increasing, as
expected, with both the resolution and tree depth. On average smooth frame rates were
achieved up to a resolution of 1280x720 for all SVO depths and with depth = 10 even
achieving almost 60 FPS. On 1920x1080 only depths up to 10 resulted in smooth frame
rates with demo 2 already stuttering at level of detail. The performance scaled quite well
with the tree depth. Even though increasing the depth by 1 increases the size of the tree
by a factor of four the rendering times only increase by a factor of less than 2, with an
increase that is often 50% or less. Similarly resolution increases increase the rendering
times by less than the increase in pixel count. Going from 640x480 to 1280x720 means
rendering three times as many pixels and going from 1280x720 to 1920x1080 increases
the pixel count by a factor of 2.25. But the rendering times only increase by factors
of roughly 2. The good scaling may be explained by inefficiencies in the GPU pipeline.
When increasing the work load the GPU has more opportunities to hide inefficiencies

64

depth depth depth depth
resolution demo = 8 = 9 = 10 = 11

min max min max min max min max

640x480 1 4.1 7.4 5.7 12.5 7.8 19.5 9.9 26.7

640x480 2 5.3 8.4 7.9 13.6 11.3 20.5 15.9 30.3

640x480 3 4.9 6.9 6.9 9.8 9.5 14.3 12.0 18.8

640x480 4 3.8 6.6 5.6 10.7 8.1 17.6 11.7 28.3

1280x720 1 8.4 14.5 12.0 23.4 16.3 33.9 21.6 47.5

1280x720 2 11.1 16.7 16.5 27.5 23.7 42.0 33.0 61.8

1280x720 3 9.5 11.2 13.2 15.7 17.7 22.2 23.5 31.2

1280x720 4 7.9 13.0 11.4 21.1 16.6 33.6 23.5 50.9

1920x1080 1 14.5 23.6 20.5 36.5 27.8 54.4 36.7 79.4

1920x1080 2 20.7 30.9 29.8 48.4 42.3 73.0 58.5 109.3

1920x1080 3 16.9 20.1 23.3 28.0 31.4 39.4 41.4 56.6

1920x1080 4 14.7 21.8 20.3 33.6 28.6 52.6 40.1 79.0

Table 7.5.: The rendering performance at different levels of detail. Average and maxi-
mum times in milliseconds are shown for different resolutions and different
tree depths. All times are from GPU rendering on the high-end system with
early depth testing disabled, rendering the environment last and three char-
acters.

like latency by quickly switching between tasks and so keeping the shader cores occupied
and getting closer to the peak memory bandwidth.

The last part of the performance analysis focused on the impact of the number of char-
acters, early depth testing and the rendering order. The results are shown in table 7.6.
With the standard deviation being 0.5ms or more the results do not differ significantly
suggesting that ray tracing an SVO takes by far the majority of time with rasterized
objects having little impact on the performance. This may be partially due to the low
polygon count of each model and partially due to rasterization itself being significantly
more efficient when no advanced effects such as lighting are implemented. It is interest-
ing though that the early or late depth testing seems to have no significant impact on
the performance. Figure 7.2 explores this in more detail. It shows the rendering time of
individual frames of the second demo. As expected the graphs are symmetrical due to
the demo itself being symmetrical. Surprisingly the two graphs are almost exactly the
same even though early depth testing requires more operations per ray when no early
termination is possible and potentially fewer operations when early termination is in fact
possible. This points to memory bandwidth being the limiting factor.

7.4.2. Image quality

Image quality was only evaluated subjectively due to time constraints. Figures 7.3 and
7.4 show the same scene and camera angle with maximum tree depths at different levels.

65

early demo 1 character 3 characters 8 characters
depth test bg. first bg. last first last first middle last

yes 1 21.8 21.7 21.8 21.6 21.8 21.6 21.6

yes 2 33.2 33.1 33.3 33.0 33.3 33.0 33.0

yes 3 23.7 23.6 23.6 23.6 23.7 23.6 23.6

yes 4 23.7 23.7 23.7 23.5 23.8 23.5 23.5

no 1 21.6 21.6 21.6 21.6 21.7 21.6 21.6

no 2 33.0 33.0 33.0 33.0 33.1 33.0 33.0

no 3 23.5 23.5 23.5 23.5 23.5 23.5 23.5

no 4 23.5 23.5 23.5 23.5 23.6 23.6 23.5

Table 7.6.: The rendering performance for different scene settings. Average times in mil-
liseconds are shown for different numbers of characters, rendering order and
early depth test on/off. The render order can be either rendering the back-
ground first, rendering it last or rendering it in between the three characters
in front of it and the five characters occluded by it. All times are from the
high-end system with GPU rendering at 1280x720 and depth = 11.

Figure 7.2.: Rendering times for individual frames of demo 2 (Zoom) at 1280x720 on the
high-end system with GPU rendering, tree depth = 11, one character and
rendering the background last.

66

Output resolution was 1280x720 pixels. Depth = 8 is completely unacceptable. The
cuboid shapes of the voxels are quite obvious and it is hard to make out any details
in the environment. Depth = 9 already improves upon that significantly by making it
possible to see details. Yet the cuboid shapes are still very visible. Increasing the depth
one step further already resulted in a quite pleasing picture. Details are well-defined and
the cuboid shapes are only visible to a trained observer. However aliasing also becomes
visible on one surface (the wall to Bob’s right that he is looking at) though it is not much
of a problem. At depth = 11 the image appears even sharper with even better defined
details. Cuboid shapes are gone with no additional aliasing appearing. The appendix
does have an additional comparison gallery with the same results except that the cuboid
shapes do not fully disappear at depth = 11 and that they are more obvious at depth
= 10. The camera has been moved closer to Bob for the screenshots in the appendix.

The two highest depth levels deliver decent to good image quality. Yet depending on
the camera’s location even those levels of detail are insufficient as depicted in figure 7.5.
Without any filtering the cuboid shapes of the voxels will eventually become visible.

Even though there is aliasing it turned out to be a minor problem in the test scene.

7.5. Recap

This chapter evaluated the polygon mesh to SVO conversion tool as well as the hybrid
renderer itself. The conversion tool performed well though there are indications of the
performance degrading seriously at higher detail levels due to swapping to the hard
drive. The renderer was able to achieve good performance even at HD resolutions with
detailed trees. Image quality turned out to be mostly positive as well when the deeper
trees were used. Memory usage for detailed SVOs is still a concern.

67

(a) maximum tree depth = 8

(b) maximum tree depth = 9

Figure 7.3.: Screenshots taken at 1280x720

68

(a) maximum tree depth = 10

(b) maximum tree depth = 11

Figure 7.4.: Screenshots taken at 1280x720

69

Figure 7.5.: Screenshot taken at 1280x720 with depth 11. Even the most detailed SVOs
eventually reveal the cuboid shape of the underlying voxels when the camera
gets too close (left side).

70

8. Conclusion

The final chapter summarizes the thesis and ends with making suggestions for future
work.

8.1. Summary

This thesis discussed core rendering techniques used in modern 3D graphics. First it
explained how modern GPUs render polygons via rasterization. Rasterization is the
sampling of surfaces. In order for objects to appear in the proper position on screen
such that a correct perspective look is achieved, each object is transformed across sev-
eral coordinate systems or spaces to the so called screen space in which the final sampling
is performed. After sampling shader programs are used to calculate the final color of
each pixel based on data read from textures. The thesis then went on by explaining
ray tracing. Ray tracing renders a scene by tracing the path of a ray into the scene
and determining the first object it intersects with. Ray tracing does not rely on trans-
formations between spaces but also performs shading in the same way as rasterization
does.

The main part of this thesis then followed in the form of a proposal of a hybrid renderer.
This render uses both rasterization and ray tracing depending on the kind of object to
be rendererd. Each technique has its own advantages in particular when complexity of
an implementation is considered. Rasterization can easily render animated deformable
objects while ray tracing is well suited for realistic lighting and volumetric effects such as
smoke or fog. The proposed hybrid renderer is able to use both techniques in any order
while still producing correct results with regard to occlusion. It is also able to utilize
different kinds of primitives for each object. Rasterization is performed on textured
polygon meshes, i.e. primitives describing surfaces, while ray tracing uses Sparse Voxel
Octrees (SVOs), i.e. primitives describing volumes. An accompanying tool to convert
polygon meshes, which are commonly used by the industry to model objects, into SVOs
was also proposed.

The proposed renderer and conversion tool have also been implemented with the
important, non-obvious parts of the implementation being discussed in this thesis. The
implementations have been evaluated and found to perform mostly well. There are still
concerns about the memory usage of SVOs during rendering but performance was already
acceptable on a high-end PC. Rendering via the CPU was found to be not an option
but rendering on a GPU produced smooth frame rates. Considering that no advanced
lighting effects etc. were implemented the image quality was promising as well. Detailed
SVOs delivered sharp images with a lot of detail and little artefacts. Solutions for the
remaining artefacts were hinted at but not yet implemented or tested.

71

8.2. Suggestions for future works

Obviously the rendering artefacts produced by the current ray tracer have to be im-
proved upon if building on this work in the future. As suggested previously in this thesis
an attempt at fixing the aliasing artefacts can be made by implementing an early ter-
mination for the ray tracing depending on the size a voxel would have on screen. Right
now the SVOs are always traversed to the leaf nodes even if an inner node already would
have roughly the size of a pixel on screen considering the distance the ray is currently
at.

To avoid the cuboid shapes of the voxels from becoming visible a blur filter could be
added. The same idea of the voxel’s size on the screen could be used. If a ray terminates
at a leaf node which is larger than a pixel a marker can be set in a different buffer. This
buffer can then be used as a stencil to only blur the marked areas.

Instead of storing color values in the SVO texture coordinates could be stored. This
could also be used as a remedy to the artefacts the current renderer produces at the cost
of losing the “easy to filter” property voxels have.

Another obvious way to improve upon this work is to implement advanced effects
such as realistic lighting and evaluate whether hybrid rendering still makes sense with
this additional processing. While this thesis has shown that basic hybrid rendering is
possible it is still not known if it is still viable when more advanced effects are computed
and if the added benefit of easier implementation of advanced lighting via ray tracing is
actually worth the cost.

The SVOs themselves also offer enough room for improvement. As shown in the evalu-
ation a lot of spaces is actually wasted on empty nodes. A more efficient data structure,
e.g. one which uses an extra field in which individual bits indicate the presences of chil-
dren or pointers, could help to reduce both the file size and the memory usage during
rendering.

Other ideas to improve SVOs include embedding quadtrees once a single flat surface
is detected during octree creation. This could not only help with memory usage but
also speed up traversal. Another potential optimization is to use wavelet decomposition
when storing the SVO. Right now each node has a color and each child may have a
different color, i.e. nine color values are stored. Using wavelets this could be reduced to
eight values reducing the space required by color values by more than 10%.

This thesis only considers hybrid rendering based on objects. It may also be viable
or even better to perform rasterization as the first step in rendering and then continue
with ray tracing during shading to implement advanced effects. This would imply that
only polygons are used as primitives due to the rasterization step but it may still turn
out to be an interesting option.

72

Appendices

73

A. Projective transformations

Rasterization-based renderers rely on several spaces/coordinate systems and transforma-
tions between them. Those transformations, e.g. translation or rotation, are represented
by matrices which is made possible through the use of homogeneous coordinates. This
means that every vector (x

w ,
y
w ,

z
w) is represented by the vector v = (x, y, z, w) with w

being normalized to 1 after every operation that might affect this value. For each vector
v and transformation matrix M the result of the transformation is determined by simply
calculating M · v.

All relevant transformations and what their matrices look like are explained in the
following sections. More detailed explanations can be found in math text books which
deal with projective geometry. Though knowing about projective geometry in that
level of detail is not necessary when implementing rasterization. Books on computer
graphics, e.g. [23], [9] and [21] as referenced in the beginning of the rasterization chapter,
usually contain enough information on projective geometry and thus transformations to
understand and being able to implement rasterization.

A.1. Scaling

Scaling a vector (x, y, z, w) to (λxx, λyy, λzz, w) is achieved by the following matrix:
λx 0 0 0
0 λy 0 0
0 0 λz 0
0 0 0 1

A.2. Translation

Translating a vector (x, y, z, w) to (x+ vx, y+ vy, z + vz, w) is achieved by the following
matrix:

1 0 0 vx
0 1 0 vy
0 0 1 vz
0 0 0 1

74

A.3. Rotation

Rotating a vector (x, y, z, w) about the X axis by an angle α is achieved by the following
matrix:

1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

The same operation but with the Y axis as a rotation axis:

cosα 0 sinα 0
0 1 0 0

− sinα 0 cosα 0
0 0 0 1

Again, same operation but with the Z axis as a rotation axis:

cosα − sinα 0 0
sinα cosα 0 0

0 0 1 0
0 0 0 1

Arbitrary rotations can be achieved by chaining the above three rotations together

via matrix multiplication. By choosing the proper order and proper angles any desired
result can be achieved. It may be easier and more efficient to use an arbitrary rotation
axis though. In such cases the matrix for rotating a vector about the axis u = (ux, uy, uz)
(in 3D space; u must be a unit vector) by an angle α is as follows:

cosα+ u2x(1− cosα) uxuy(1− cosα)− uz sinα uxuz(1− cosα) + uy sinα 0

uyux(1− cosα) + uz sinα cosα+ u2y(1− cosα) uyuz(1− cosα)− ux sinα 0

uzux(1− cosα)− uy sinα uzuy(1− cosα) + ux sinα cosα+ u2z(1− cosα) 0
0 0 0 1

A.4. Perspective projection

As mentioned in the chapter on rasterization the sampling algorithm used actually cal-
culates an orthogonal projection. To give it the appearance of a perspective projection
an additional transformation is applied to vertices which are already in camera space.
This transformation makes sure that the frustrum which contains every visible polygon
becomes a cube whose center is the origin of the coordinate system and whose sides are
all two units long.

Calculating this transformation matrix requires four parameters:

• the screen’s aspect ratio ar = screen width
screen height

75

• the vertical FOV: the vertical angle α of the camera’s view frustrum

• the location of the image plane nearZ onto which the visible part of the scene is
projected

• the distance farZ of objects that are too far away to be visible

Introducing farZ helps preventing visual artifacts when objects become too small. It
also helps with performance as polygons which are outside the previously mentioned
cube are not sampled from at all. The transformation matrix is as follows:

1
ar·tan α

2
0 0 0

0 1
tan α

2
0 0

0 0 −(nearZ+farZ)
nearZ−farZ

2·nearZ·farZ
nearZ−farZ

0 0 1 0

There is one problem with this matrix. For a proper projection the X and Y values

have to be divided by the Z value. Unfortunately this can not be expressed by a matrix.
To account for this the Z value is copied to the W value (last row in the matrix) and
rasterization hardware performs this final operation before starting the sampling. At
this point all visible points have X, Y and Z values in [−1, 1]. By taking the screen’s
aspect ratio and the desired vertical FOV into account all objects appear natural instead
of appearing deformed after sampling.

76

B. Additional screenshots

Figures B.1, B.2, B.3 and B.4 are comparisons similar to the one used for evaluating the
image quality in chapter 7. Refer to that particular section for details.

Figure B.1.: Screenshot taken at 1280x720, maximum tree depth = 8

77

Figure B.2.: Screenshot taken at 1280x720, maximum tree depth = 9

Figure B.3.: Screenshot taken at 1280x720, maximum tree depth = 10

78

Figure B.4.: Screenshot taken at 1280x720, maximum tree depth = 11

79

Bibliography

[1] Epic games’ tim sweeney explains lack of global illumina-
tion in unreal engine 4. http://www.playstationgang.com/

epic-games-tim-sweeney-explains-lack-of-global-illumination-in-unreal-engine-4/.
Online; accessed 28-February-2014.

[2] Outcast (video game) - wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/Outcast_(video_game). Online; accessed 28-February-2014.

[3] Attila T Áfra. Incoherent ray tracing without acceleration structures. In Euro-
graphics (Short Papers), pages 97–100, 2012.

[4] Dennis Bautembach. Animated sparse voxel octrees. Thd Thesis. University of
Hamburg, 2011.

[5] Louis Bavoil and Miguel Sainz. Multi-layer dual-resolution screen-space ambient
occlusion. In SIGGRAPH 2009: Talks, page 45. ACM, 2009.

[6] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games, pages 15–22. ACM,
2009.

[7] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt. The
triangle processor and normal vector shader: A vlsi system for high performance
graphics. SIGGRAPH Comput. Graph., 22(4):21–30, June 1988.

[8] Kirill Garanzha and Charles Loop. Fast ray sorting and breadth-first packet traver-
sal for gpu ray tracing. In Computer Graphics Forum, volume 29, pages 289–298.
Wiley Online Library, 2010.

[9] J. Gomes, L. Velho, and M.C. Sousa. Computer Graphics: Theory and Practice.
Ak Peters Series. Taylor & Francis, 2012.

[10] Samuli Laine, Timo Aila, Tero Karras, and Jaakko Lehtinen. Clipless dual-space
bounds for faster stochastic rasterization. In ACM Transactions on Graphics
(TOG), volume 30, page 106. ACM, 2011.

[11] Samuli Laine and Tero Karras. Efficient sparse voxel octrees. Visualization and
Computer Graphics, IEEE Transactions on, 17(8):1048–1059, 2011.

[12] Timothy Lottes. Fxaa. NVIDIA white paper, 2011.

80

http://www.playstationgang.com/epic-games-tim-sweeney-explains-lack-of-global-illumination-in-unreal-engine-4/
http://www.playstationgang.com/epic-games-tim-sweeney-explains-lack-of-global-illumination-in-unreal-engine-4/
http://en.wikipedia.org/wiki/Outcast_(video_game)
http://en.wikipedia.org/wiki/Outcast_(video_game)

[13] Josiah Manson and Scott Schaefer. Wavelet rasterization. In Computer Graphics
Forum, volume 30, pages 395–404. Wiley Online Library, 2011.

[14] Martin Mittring. The technology behind the “unreal engine 4 elemental demo”. part
of “Advances in Real-Time Rendering in 3D Graphics and Games,” SIGGRAPH,
2012.

[15] Benjamin Mora. Naive ray-tracing: A divide-and-conquer approach. ACM Trans-
actions on Graphics (TOG), 30(5):117, 2011.

[16] Jacob Munkberg and Tomas Akenine-Möller. Hyperplane culling for stochastic
rasterization. In Eurographics (Short Papers), pages 105–108, 2012.

[17] Hubert Nguyen. Gpu Gems 3. Addison-Wesley Professional, first edition, 2007.

[18] NVIDIA. Csaa - coverage sampled aa. http://www.nvidia.com/object/

coverage-sampled-aa.html. Online; accessed 26-February-2014.

[19] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation (Gpu Gems).
Addison-Wesley Professional, 2005.

[20] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d shapes.
SIGGRAPH Comput. Graph., 24(4):197–206, September 1990.

[21] Peter Shirley and Steve Marschner. Fundamentals of Computer Graphics. Ak Peters
Series. Taylor & Francis, 2009.

[22] László Szécsi and Dávid Illés. Real-time metaball ray casting with fragment lists.
In Eurographics (Short Papers), pages 93–96, 2012.

[23] John F. Hughes; Andries van Dam; Morgan McGuire; David F. Sklar; James D.
Foley; Steven K. Feiner; Kurt Akeley. Computer Graphics: Principles and Practice.
Addison-Wesley Professional, third edition edition, 2013.

[24] Sven Woop, Jörg Schmittler, and Philipp Slusallek. Rpu: a programmable ray
processing unit for realtime ray tracing. In ACM Transactions on Graphics (TOG),
volume 24, pages 434–444. ACM, 2005.

[25] Cevat Yerli and Anton Kaplanyan. Future graphics in games. In High Performance
Graphics, 2010. http://www.crytek.com/download/Notes.ppt. Online; accessed
28-February-2014.

81

http://www.nvidia.com/object/coverage-sampled-aa.html
http://www.nvidia.com/object/coverage-sampled-aa.html
http://www.crytek.com/download/Notes.ppt

	List of Figures
	List of Tables
	Introduction
	Motivation
	Scope

	Rasterization
	Basic approach
	Hardware acceleration
	Advanced techniques
	Recap

	Ray tracing
	Basic approach
	Hardware acceleration
	Advanced techniques
	Recap

	Related work
	Rasterization
	Ray tracing
	Hybrid approaches

	Hybrid rendering
	Goals
	Combining the two techniques
	Rasterization
	Voxel ray tracing
	Generating voxel octrees
	Recap

	Implementation
	Tools and file formats
	The hybrid renderer
	Floating-point precision
	Recap

	Evaluation
	Test setup
	Polygon meshes
	Sparse voxel octrees
	Rendering
	Recap

	Conclusion
	Summary
	Suggestions for future works

	Appendices
	Projective transformations
	Scaling
	Translation
	Rotation
	Perspective projection

	Additional screenshots
	Bibliography

