
Simulation of Liquid Surfaces
for Games

Bachelor’s Thesis
by

Daniel Gritzner
from

Worms

submitted to
Lehrstuhl für Praktische Informatik IV

Prof. Dr.-Ing. W. Effelsberg
Fakultät für Mathematik und Informatik

University of Mannheim

August 2010

Supervisor: PD Dr. rer. nat. habil. Thomas Haenselmann

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit ohne Hilfe Dritter und nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mannheim, den 10.08.2010 Daniel Gritzner

Contents

List of Figures 2

List of Tables 3

Abbrevations 4

1. Introduction 5
1.1. Motivation . 5
1.2. Related Work . 6

2. Simulating liquid surfaces 10
2.1. Goals . 10
2.2. Model . 11
2.3. Physical background . 12
2.4. Damping . 16
2.5. Reflections . 17
2.6. Object to liquid interactions . 18
2.7. Liquid to object interactions . 20
2.8. Extended implementation . 20
2.9. Rendering . 22
2.10. Liquids other than water . 23
2.11. Limitations . 24

3. Evaluation 26
3.1. Test Setup . 26
3.2. Performance and memory consumption . 26
3.3. Realism . 28

4. Conclusion 31
4.1. Suggestions for future works . 31
4.2. Summary . 32

Appendices

A. Benchmark results 34

Bibliography 36

List of Figures

2.1. Example surface function . 12
2.2. Membrane/String model . 13
2.3. Water replaced by object . 18
2.4. Problem with water replaced by certain objects 19
2.5. Buoyancy . 20

3.1. Wave screenshots . 29
3.2. Liquid-object interaction screenshots . 30

List of Tables

3.1. Test system . 26
3.2. Benchmark excerpt . 27

A.1. Single-threaded benchmark results . 34
A.2. Multi-threaded benchmark results . 35

Abbrevations

ACM Association for Computing Machinery

CPU Central Processing Unit

DDR Double Data Rate

FFT Fast Fourier Transform

GCC GNU Compiler Collection

GDC Game Developers Conference

GPU Graphics Processing Unit

HDD Hard Disk Drive

LOD Level of Detail

OpenGL Open Graphics Library

PC Personal Computer

RAM Random Access Memory

rpm rotations per minute

SATA Serial Advanced Technology Attachment

SDL Simple DirectMedia Layer

SDRAM Synchronous Dynamic Random Access Memory

SIGGRAPH Special Interest Group on Graphics and Interactive Techniques

1. Introduction

1.1. Motivation
In the last few years it has become quite common for games to include physics-based
elements. The idea is that this creates a more immersive (“believable”) game world for
the player to experience. Also these elements themselves might be interesting enough to
entertain players. In the end the idea is to make the game more enjoyable and thus sell
more copies by getting good reviews from the media or by creating a franchise which
players associate with a fun experience.
One of these elements are so called ragdoll physics which simulate the way a humanoid

body moves through space when external forces are applied. E.g. first person shooter
games use this approach to increase the immersion by causing each dead body to fall
to the ground differently. Before ragdoll physics were used there usually was a finite set
of animations which showed a body falling to the ground and how it lays there. When
playing a game for longer periods this might remind the player that the world he sees is
just virtual and thus break the immersion.
Though ragdoll physics are an interesting concept this bachelor’s thesis will focus on

another physical phenomenon namely liquid surfaces. With large parts of the earth
covered with water and water being such a central element of our lives it is easy to see
how including a believable representation of liquids may increase the immersion of the
player into the game world. This thesis will show a way to simulate the surface of liquids
in a way so that interactions with other objects can easily be implemented. Even today
many games only provide fake interactions at most which makes the liquids (usually
water) look less believable as soon as some object comes into contact with it.
While there are already visually convincing solutions from the field of fluid dynamics,

which liquid surfaces are a subset of, these solutions usually are computationally expen-
sive making them unsuitable for games. Because of this downside this thesis’ focus is on
just the surface of liquids to reduce the complexity of the problem and with it the com-
plexity of the solution. After all games consist of many more things than just graphics.
E.g. the behavior of the non-player characters has to be determined or the player’s input
has to be processed. This means that the simulation of the liquid surfaces may only use
a small fraction of the already quite limited time which is available for each rendered
frame. With 30 to 60 frames per second being the de facto standard the simulation has
to be done in a fraction of 16 to 33ms without the use of expensive supercomputers.

5

1.2. Related Work
The work related to liquid surfaces can be divided into three categories:

• Games: The state of the art in modern games

• Fluid dynamics: Solutions using full fluid dynamics

• Liquid surfaces: Solutions with the same scope as this thesis

Each category is relevant in a slightly different way. The state of the art in games
is interesting to get a clearer idea of the problem of liquid surfaces and their use in
games. As already mentioned liquid surfaces are a subset of fluid dynamics. Thus a
short overview of full fluid dynamics and why they are or might be unsuitable for games
is appropriate. The relevance of the last category is obvious. It simply contains works
that cover the same problem.
Due to the vast amount of work done in the field, especially concerning the simulation

of water, each category contains only a representative selection of the existing work.

1.2.1. Games
Three points are important for this category. How do liquids look in current games, how
are they implemented and in what way, in terms of gameplay, are they used.
At first the look of water in games. Other liquids only play very minor roles and

usually the only liquid found in games is water. Most modern games only aim to achieve
real looking water without really simulating it. This can be seen quite easily when
looking at how it interacts with other objects in the scene like characters or bullets shot
at the surface. If left alone the water in games like Crysis or Unreal Engine 3-based
games like Gears of War 2 and BioShock looks quite convincing. As soon as the water
has to interact with other objects aside from static geometry the immersion often breaks.
This is due to the water not being simulated properly. It’s look is only faked. Instead of
real interactions an effect showing a concentric ring is rendered on top of the surface or
particles trying to emulate a special effect like a splash are added to the scene. While
some implementations, e.g. when the water is represented by a real mesh instead of a
“simple” texture and normal map and the mentioned ring effect affects said mesh, might
look quite convincing for a brief moment this impression does not last. These added
effects only have a limited lifetime and only effect a limited part of the water surface.
While this might look convincing enough at first, the way the water surfaces returns to
it’s previous behavior as if nothing has happened usually reveals that no real simulation
is taking place. Also the amount of additional effects added is limited due to each effect
costing additional CPU time and memory. This means that limits like the number of
such effects and their lifetime might have a negative impact on how real the water looks
if they are too low.
The second point that needs discussion is how the water is represented in the first

place if it is not properly simulated. Due to the proprietary nature of most games only
educated guesses can be made here. Looking at available solutions and the way water

6

behaves in games, as outlined in the previous paragraph, it seems like the water in most
games is generated procedurally. This means for each point (x, y) of the water surface
and each point in time t there is a function h(x, y, t) which returns the height of the water
at the given point in space and time. The function h might actually be a combination of
multiple functions, e.g. a sum of sine functions with different parameters. This model fits
as it explains the behavior of games with a function h0 defining the behavior of the water
surface without any interactions and several functions hn added to it temporarily when
interactions occur (and no particles are used). With the selection of proper functions
and parameters this may already look quite convincing which is the reason why water in
modern games usually looks real enough for their purposes. But it is apparent that this
kind of implementation has strict limitations in terms of the number of effects because
each additional effect adds processing time and occupies memory as already mentioned.
The last point that has to be considered is the way water is used in games. With a

few exceptions water is used mostly for visual purposes to create more lifelike scenes.
Sometimes this water is even used as a kind of “natural” border which limits the regions
the player can visit in the virtual world. In these games swimming simply is not possible.
Even in games where swimming or diving is possible most of the gameplay usually
takes place on land. This minor role for water and other issues like development time
constraints might be a reason why so many if not all games use procedurally generated
water (solutions for this are easily available) instead of proper simulations. But as said
before there are exceptions. Some games use water as a central gameplay element.
Notable games in this regard are Wetrix, Wave Race: Blue Storm and BioShock. Wetrix
is a Tetris-like puzzle game in which the player has to catch rain on an initially flat
platform. Wave Race: Blue Storm is, as the name indicates, a racing game. The
races are taking place on water using stand-up personal watercrafts (colloquially called
Jet Skis). BioShock is a first person shooter set in an underwater city. At the time
the player arrives in said city it has fallen into disrepair. The game tries to create a
threatening atmosphere by effects like water leaking from the outer walls into the city.
The game mechanics also allow larger pools of water to be electrically charged and by
that electrocuting characters in such pools.

1.2.2. Fluid dynamics
Fluid dynamics is the term used in physics as the study of fluids which are in motion.
Fluids can either be liquids or gases. As a result of the total motion of a fluid the motion
or behavior of it’s surface is implicitly defined, making the behavior of liquid surfaces
a subset of fluid dynamics. There exists numerous implementations of fluid dynamics.
Examples are Autodesk Maya ([13]) and the work of Robert Bridson ([17], [2]). Maya is
an application used for creating 3D models, animations and simulations. It is used by
people working in different industries that rely on visualization, e.g. the film industry or
the video game industry. One of it’s features is fluid simulation which allows the user to
simulate the behavior of smoke, steam, different bodies of water (the ocean, ponds, etc.)
among other things. Maya tries to achieve the highest possible level of realism. Thus
it is used in environments where processing time is no critical issue. E.g. it does not

7

matter for a movie if it takes several minutes or even hours to render one frame. The
audience will only see the precomputed result and thus the level of realism achieved is
more important than the time it took to compute it. Unfortunately Maya is a proprietary
product and so one has to rely on educated guesses again to asses how Maya works. The
feature list on Autodesk’s website ([13]) mentions particles among other things. So it
might be possible that Maya uses a large amount of particles to simulate fluids. Each
particle has to be simulated according to Newton’s laws of motion. To do that the forces
applied to each particle have to be evaluated. Other physical models like the Navier-
Stokes equation ([5]) are necessary to do that. Depending on the actual model used it
is easy to see why each simulation step might take long to compute. If the interaction
between particles is taken into account (e.g. in the form of pressure) the calculations
needed to find the forces applied to each particle rises quickly and also depends on the
total number of particles or at least the number of particles in the close vicinity. Also to
achieve a high level of realism a large number of particles each representing only a tiny
amount of space is needed. The combination of at least quadratic complexity and a large
problem instance (many particles) leads to the long computation time. This does not
take into account that after each particle has been moved the implicitly defined surface
has to be determined and rendered which also takes time.
As already mentioned this is just a guess of how Maya might work when simulating

fluids. It is also entirely possible that it works similar to how Robert Bridson, associate
professor at the University of British Columbia and co-founder of a company that pro-
duces software for physics simulations for use by the film industry, achieves his results.
A paper by written by Jos Stam ([7]) indicates that at least older versions of Maya
used techniques similar to the one described in this paragraph. Robert Bridson uses the
Navier-Stokes equation as model for fluids. But instead of solely relying on particles
he uses a hybrid approach using both grids and particles. He bases his algorithms on
having a large grid which stores values like pressure or fluid density. Only where con-
venient Robert Bridson assumes that particles are at the locations defined by the grid.
His algorithms consist of several steps to simulate the fluid motion. What makes his
implementation too slow for games is that he has to solve large linear equation systems.
Basically each grid cell contributes at least one equation and unknown variable (not
accounting for the boundaries) and with sufficiently large grids like 256x256x256 this
results in long computation times.
Even though the results are impressive as can be seen in the demo videos on Autodesk’s

website or in the images posted on Robert Bridson’s website ([17]) the required compu-
tations are simply too expensive for video games which have only a few milliseconds per
frame and have to run on cheap hardware. In this context one should mention the chapter
in fluid dynamics in GPU Gems 3 ([10]) and look at Jos Stam’s paper ([7]) again. Both
claim being able to do fluid dynamics simulations in real-time. Unfortunately neither
work includes proper performance evaluations. There are no sections giving details on
the hardware used, the parameters used (e.g. grid sizes) and the performance achieved
in frames per second or processing time per simulation step. Only rough indications are
given pointing to ordinary consumer PC hardware being used. Jos Stam’s paper also
mentions in a section on extensions to his simulation that liquid simulations (specifically

8

water simulations) might not yet run in real-time at the time the paper was published
in 2003. The game mentioned in GPU Gems 3 only features gases as well. But without
more details it is difficult to asses if fluid dynamics simulations can really be done in
real-time for games and what limitations still might exist like being able to simulate
gases but not liquids. For future games these works look promising though.

1.2.3. Liquid surfaces
Most of the work done in this area are procedurally generated water surfaces. These have
already been discussed in the subsection about games. The complexity of the functions
varies quite a bit. While some functions can be evaluated directly like those based on sine
functions as used by Intel ([15], [16]), other functions like one used by Vladimir Belyaev
([1]) are based on more complex physical models and require solutions like fast Fourier
transform (FFT). A FFT has a complexity of O(n · logn) which seems quite reasonable
and in fact can be used for real-time applications as shown in the mentioned paper. But
in the case of water simulations n is actually dependent on a two dimensional plane and
thus grows quadratically. So an even lower complexity like being able to evaluate the
height at each point in constant time which results in a total complexity of O(n) (again
with a quadratically increasing n) would be preferable. Matthias Müller-Fischer achieves
this with his height field simulations ([6]). To store the current state of the surface a
grid is used. At each grid cell the surface height at that point on the plane is stored.
How each height value changes over time is derived from looking at the forces applied to
a given point of a membrane which serves as model for the liquid surface. It turns out
that the change can be calculated with just looking at each neighboring cell resulting
in the mentioned linear complexity. This also makes the simulation physically correct
for all bodies of water which can be modeled in this way which means all bodies of
water which only have waves with low amplitudes. Another advantage of this approach
over procedurally generated water surfaces is that interactions with objects can easily
be included without a cost penalty on a per object basis for the surface simulation.
Many papers on water surface simulation focus heavily on the rendering aspects. While

this bachelor’s thesis is more concerned with the simulation of the surface, rendering is
still a related topic. The works of Vladimir Belyaev ([1]) and Rene Truelsen ([19])
are examples works showing how a water surface can be rendered in a convincing way.
Rendering is non-trivial because of the various effects affecting how water looks. In
terms of optics the water surface represents the border of two mediums with different
optical properties which means that effects like refraction and reflection occur. Combined
with the fact that water itself is colorless and the perceived color comes from particles
dissolved in it and the color of the light shining on it, the water’s color depends heavily
on the environment it is in. Due to the refractions and reflections the water might also
have an impact on it’s environment in the form of caustics.

9

2. Simulating liquid surfaces

As seen in the previous chapter there is a vast amount of existing work related to liquid
surfaces or in the most cases water surfaces. Many different models and solutions to
the problem have been proposed. Thus at first the goals of this bachelor’s thesis will
be discussed in more detail in this chapter. From these goals a model and it’s physical
background will be derived. After the basics have been established there will be a
discussion of additional phenomena like damping, reflections and interactions between
liquids and objects. To give a complete picture of the simulation implementation details
will be pointed out before concluding this chapter with hints on rendering, simulating
arbitrary liquids and limitations.

2.1. Goals
The introduction already loosely stated some of the goals like creating more immersive
virtual worlds but in a way that is fast to compute. However it is not exactly clear what
that means. Thus this section provides a list of key points and a short discussion of
those.

1. High performance

2. Realism

3. Simplicity

4. Low memory requirements

As initially mentioned games have tight requirements concerning the time that may
be spent per frame to be rendered. In order to be able to render enough frames per
second, to achieve a smooth looking simulation, only 16 to 33ms may be spent on each
frame. Within this timeframe several different problems have to solved including among
other things processing the players input, updating the state of the game world (e.g.
by moving objects), detecting collisions and determining the behavior of non-player
characters. Thus only a fraction of those 16ms to 33ms may be used for the simulation
of liquids.
The second point should probably be called immersion instead of realism. It is more

important to create virtual worlds that are believable and allow the player to immerse
into than it is to represent the laws of physics of the real world as accurate as possible.
Doing so would even exclude entire settings from being used like fantasy settings with
monsters and magic or science fiction settings depicting technology which does not exist

10

yet. Basing the simulation on actual physics is helpful to create a believable world since
it reflects what people can actually experience outside of games but accuracy may be
sacrificed to some extent to improve on other points like performance.
The last two points are only minor issues. Both points are similar to the first one in

that they are a result of games being usually about more than just water simulations.
Depending on the available budget it might not be economically viable to spend too
much time on implementing and debugging a complex simulation or buy and integrate
middleware when developing a game. Depending on the role of water in the game it
might simply be more effective to spend time and money elsewhere. This speaks in favor
of a simple solution. But since one might also argue that the games industry has become
so big that many games are produced with a large budget simplicity is only a minor issue.
Low memory requirements are also just a minor issue. The combined memory available
to the CPU and GPU of modern systems is in the range of several gigabytes already.
This point is mainly mentioned with regard to video game consoles like the Xbox or the
PlayStation which still only have available memory in the magnitude of megabytes.
Matthias Müller-Fischer’s work outlined in the first chapter fits these goals quite well.

It has a low computational complexity, it is based on actual physics and allows the
inclusion of interactions between the liquid and objects relatively easy. It even fits the
minor goal of simplicity. For these reasons the further work done in this bachelor’s thesis
is based on the work on height field fluids by Müller-Fischer. It is also worth noting that
the version from SIGGRAPH 2007 ([6]) was used even though Müller-Fischer showed an
updated version at the Game Developers Conference 2008 ([12]). But no video recording
of the lecture at the GDC was available and the presentation slides alone are hardly
comprehensible. A video of the SIGGRAPH 2007 version is available at the ACM portal
([4]).

2.2. Model
The model of the liquid surface has been chosen to be a continuous surface such that a
function fs(x, y) exists which represents the surface by assigning a height value to each
point on a plane. Said function represents the state of the liquid surface for one specific
point in time. An example is shown in figure 2.1. To be able to represent arbitrary
functions in memory a grid is used. This grid stores height values representing the
distance from the bottom of the body of liquid being simulated to it’s surface. It does
not matter whether the intersections of the lines of the grid or any point inside each
grid cell is used to discretize and store the height values. However we will see that it is
beneficial to discretize the surface in such a way that the points are evenly spaced. This
simplifies the implementation.
This model does not cover the behavior of the liquid surface yet. Thus another function

ft is needed which assigns a given state s0 = fs(x, y) and time difference t the state
st = ft(s0, t). The state st represents how the surface looks like after time t has passed.

11

Figure 2.1.: An example for a function fs(x, y) describing a surface. The function is
fs(x, y) = z(x, y) = 100− x2 − y2.

2.3. Physical background
As a physical background Matthias Müller-Fischer proposes the model of an elastic
membrane with low stiffness for the liquid surfaces. The displacement of the membrane
at different points translates to the heights of the liquid surface it shall model. Müller-
Fischer uses the force acting on a infinitesimal point on the membrane surface which are
caused by stress which in turn is a result of the displacement. This force in combination
with Newton’s laws of motion is then used to determine the height changes of the liquid
surface.
Figure 2.2 shows the one-dimensional case of such a membrane. It shows a membrane

in vibration at a fixed point in time. Due to the vibration most points of the membrane
are displaced by a certain amount u(x), or u(x, t) to account for the fact that this dis-
placement is dependent on both space and time. The figure also shows an enlarged cross
section of the membrane. This cross section shows the forces acting on an infinitesimal
point due to stress. This force acts in two directions. It acts from any given infinitesimal
point onto it’s surrounding and it also acts from the (infinitesimal) surrounding of each
point onto the point itself. This is in accordance to Newton’s laws of motion which
state that for each force there is a reactive force with the same magnitude but opposing

12

Figure 2.2.: The one-dimensional case of the membrane model. In this case the mem-
brane becomes a string. This picture is taken from the slides of Matthias
Müller-Fischer’s lecture at SIGGRAPH 2007. The colors have been adjusted
to fit this thesis.

direction.
With the assumption of constant stress σ the force on an infinitesimal point is

f = σ ·A (2.1)

with A being the area of the membrane’s cross section at this point. This follows
directly from the physical definition of stress. This force is directed along the tangent
of the membrane at that point. The part of this force that is actually interesting for
determining the change of the displacement is the part in the direction of u(x, t). As
an simple approximation to get this magnitude one can simply multiply the right-hand
side of the equation with the derivative of u(x, t) with respect to x. To see that this
works one has to look at the magnitude of d

dxu(x, t). If u(x, t) is constant the derivative
and also the force in the direction of u(x, t) becomes zero. The steeper the function gets
the higher the magnitudes of both the derivative and the force get. This approximation
works well for low displacements. Thus the magnitude of the force f in the direction of
u(x, t) becomes

fu = d

dx
u(x, t) · σ ·A. (2.2)

This equation is not complete yet. As already mentioned Newton’s laws also state that
every force has a reactive force. Accounting for this reactive force the actual magnitude
of fu is

fu = d

dx
u(x+ ∆x, t) · σ ·A− d

dx
u(x, t) · σ ·A (2.3)

=
(
d

dx
u(x+ ∆x, t)− d

dx
u(x, t)

)
· σ ·A. (2.4)

The first part with the derivative at x + ∆x is the force acting on the infinitesimal
point from the surrounding points and the second part with the derivative at x is the

13

counteracting force of the point on it’s surrounding points. Note: this derivation will
use ∆x when referring to the dx shown in figure 2.3. This is done to avoid confusion
with the derivative with respect to x.
Now one knows the force required for applying Newton’s second law of motion which

states f = m · a. The acceleration a in this case is actually d2

dt2u(x, t) and thus the
parameter which can be used to determine the change of the displacement which equals
the change in height of the modeled liquid surface. The mass m of the membrane cross
section can easily be computed by multiplying the density ρ with the volume V = ∆x·A.
So the right-hand side of Newton’s second law of motion becomes

(ρ ·∆x ·A) · d
2

dt2
u(x, t). (2.5)

The left-hand side of Newton’s law is the force fu discussed in the previous paragraph.
So the equation becomes(

d

dx
u(x+ ∆x, t)− d

dx
u(x, t)

)
· σ ·A = (ρ ·∆x ·A) · d

2

dt2
u(x, t). (2.6)

To get the acceleration one has to divide by the mass m = ρ ·∆x ·A which turns equation
2.6 into

d2

dt2
u(x, t) =

d
dxu(x+ ∆x, t)− d

dxu(x, t)
∆x · σ

ρ
. (2.7)

To get the acceleration on an infinitesimal point the surroundings have to be chosen
infinitesimally small as well which means that ∆x goes to 0. This means that the first
part of the right-hand side of the last equation becomes another derivate simplifying the
equation to

d2

dt2
u(x, t) = σ

ρ
· d

2

dx2u(x, t) (2.8)

which can be further simplified to

d2

dt2
u(x, t) = c2 · d

2

dx2u(x, t) (2.9)

with c2 = σ
ρ . This differential equation can be solved with any function f and defining

u(x, t) := a · f(x+ c · t) + b · f(x− c · t). When calculating the derivatives of this u(x, t)
one sees why σ

ρ was defined as c2 instead of just c. In this definition of u(x, t) one can
also see the meaning of c. It is the speed with which waves travel.
For the proposed implementation using a grid storing heights at discrete positions

(x, y) equation 2.9 has to be discretized. To get the second order derivative in time one
can simply use two first order derivatives. This means another parameter v representing
the velocity is introduced. The change in displacement at x when time ∆t has passed in
the discrete case is simply

u(x,∆t) = v(x, t) ·∆t (2.10)

14

with the multiplication being the discrete version of integration necessary to get from
the velocity to the displacement. The change in the velocity can be calculated similarly
as

v(u,∆t) = c2 · d
2

dx2u(x, t) ·∆t. (2.11)

Since these equations only determine the magnitude of change over time the old values
for u(x, t) and v(x, t) have to be stored and the change simply added to each position.
This means the actual heights of the liquid surface are determined by

u(x, t+ ∆t) = u(x, t) + u(x,∆t) (2.12)

and

v(x, t+ ∆t) = v(x, t) + v(x,∆t). (2.13)

The second order spatial derivatives can be calculated with simple differences in the
discrete case. To get the first order derivatives one simply calculates the differences to
an immediate neighbor. There are two possibilities because there are two neighbors to
choose from. The possibilities are

d

dx
u

[
x− 1

2

]
= u[x]− u[x− 1]

h
(2.14)

and

d

dx
u

[
x+ 1

2

]
= u[x+ 1]− u[x]

h
. (2.15)

Both are needed to calculate the second order derivative. It is the difference of those
two possibilities. The second order derivative thus is

d2

dx2u[x] =
d
dxu[x+ 1

2]− d
dxu[x− 1

2]
h

(2.16)

= u[x+ 1] + u[x− 1]− 2 · u[x]
h2 . (2.17)

This derivative can then be used to calculate the change in velocity and consequently
the change in displacement or height. Note: square brackets have been used to indicate
that values for discrete spatial points are being discussed. The parameter t has been
omitted because these values are the heights stored in the gird discussed early. This grid
only represent the state of the liquid surface for a specific point in time.
So far only the one-dimensional case has been discussed. When doing the same for

the two-dimensional case equation 2.9 becomes

d2

dt2
u(x, y, t) = c2 ·

(
d2

dx2u(x, y, t) + d2

dy2u(x, y, t)
)

(2.18)

15

and the discrete second order spatial derivate becomes

u[x+ 1, y] + u[x− 1, y] + u[x, y + 1] + u[x, y − 1]− 4 · u[x, y]
h2 . (2.19)

The other equations like the velocity change or height change (equations 2.10 to 2.13) stay
the same. With these equations one arrives at the following pseudo-code implementation
of the liquid surface simulation:

1 f o r a l l i , j :
2 du = u [i +1, j] + u [i −1, j] + u [i , j +1] + u [i , j −1] − 4∗u [i , j]
3 f = c ∗∗2 ∗ du / h∗∗2
4 v [i , j] = v [i , j] + f ∗ t
5 u2 [i , j] = u [i , j] + v [i , j] ∗ t
6 endfor
7 f o r a l l i , j :
8 u [i , j] = u2 [i , j]
9 endfor

This pseudo-code implementation uses the following symbols:

• u: an array storing the heights at each point (i, j)

• u2: an array storing the heights after time t has passed

• v: another array storing the velocity with which the heights in u change (initialized
to 0 at all points before the first simulation step)

• f : force derived from the physical model which causes the change in height

• t: time which has passed between the states in u and u2

• c: the speed with which waves travel over the surface

• h: the grid spacing (assumed to be constant)

Note: the notation a**b is used in the pseudo-code for ab.
This pseudo-code already implements the basic surface simulation allowing waves to

spread when u gets changed by external forces. Once such an external force has been
completely applied it is not needed anymore to simulate how the waves will spread. The
force is only needed for the initial change in height. The pseudo-code is the function ft
mentioned at the end of the section discussing the model.

2.4. Damping
In his lecture at the GDC 2008 Matthias Müller-Fischer also discusses the physical
phenomenon of damping. The above pseudo-code causes the waves to spread endlessly.
With a simple experiment it can be shown that this behavior is not realistic: if you fill

16

a bowl with water and causes some waves maybe by throwing a small object into it, the
amplitude of those waves will decrease over time. This is called damping. The approach
taken when deriving the force from the membrane model simply does not take such a
damping force into account. Müller-Fischer proposes three ways to fix this:

1. including a damping force

2. scaling the values in the array v with some factor s ∈ (0, 1)

3. limiting the magnitude of the change made to the array u at each point

While the first idea is the only one with a physical background it is also difficult to
derive how this force should be included and which parameters should be used for it
to achieve the damping effect. It simply does not follow from the membrane model.
With this problem in mind the second idea was adopted for this bachelor’s thesis. Both
the the second and third ideas offer easy to understand and direct control of what
happens. The third idea has the disadvantage of requiring more changes to the code
including conditional statements and having no effect on waves with small amplitudes.
The negative impact of branching (conditional statements) is highly dependent on the
hardware architecture used to run the code on. While most modern CPUs have features
like branch prediction to mitigate the negative impact of conditional statements to some
extend other architectures might be simpler in order to dedicate more hardware to actual
computations. E.g. on GPUs branching is considered to be expensive and should be
avoided. GPU Gems 2 ([9]) features a short article on this issue.

2.5. Reflections
So far there has been no discussion on how to handle the boundaries or for the same
matter large objects floating on the surface. Since the size of the simulated liquid surface
is fixed (for more details see the section on limitations later int his chapter) one can
assume that some kind of wall is at the borders of the simulated surface. What happens
when a wave collides with a solid wall is that it is reflected. Matthias Müller-Fischer
also gives a solution on how to implement those reflection. The solution is to simply
clamp the height values at all boundaries. This means that if a value beyond the grid,
e.g. u[−1, j], or value for a grid cell which is occupied by large floating object at surface
is addressed, one simply uses the height value of the current cell instead. E.g. when
updating u[0, 0] the values for u[−1, 0] and u[0,−1] are needed. But instead of trying
to guess some values for these two non-existent cells the value for u[0, 0] is used instead
in both cases. Unfortunately Müller-Fischer does not clarify why this causes reflections.
When giving is lecture at SIGGRAPH 2007 he indicated that the answer might be given
in Robert Bridson’s part of the same lecture ([6], [4]).
As already stated large objects, e.g. a ship, have the same effect as solid walls and

will reflect waves. This means that one has to know which grid cells are occupied by
such objects when updating the height values. To avoid having to do collision queries
each time a height value is read from u, a boolean array b can be used to store if any

17

given cell is occupied and clamping should be used. When updating the height values
occupied cells might be skipped. But in order to avoid more or less obvious artifacts
when visualizing the surface it is still advisable simply update the values for those cells
as well. The rendered surface still has to extent to the real boundaries of the object,
which might not be aligned with grid. Depending in on how the visualization is done
a constant (non-updated) height value for such a cells might be visible. E.g. when
a triangle mesh is used to represent the surface some vertices would remain constant
which might be visible in the way the surrounding triangles change their “shape” over
time. When not skipping over blocked cells one should use extra damping for those
cells to avoid numerical explosion. Due blocked cells likely being surrounded by more
blocked cells the force acting on the heights at those cells is low meaning the velocity at
those cells will hardly change. Thus over time huge heights might develop without extra
damping.

2.6. Object to liquid interactions
What happens when an object comes into contact with a liquid surface is that it pushes
liquid aside. To keep track of how much liquid is replaced by an object Matthias Müller-
Fischer proposes to add another array called r. For each grid position r holds the amount
of liquid currently replaced. Before each simulation step r is updated and the difference
at each grid point is calculated. This difference is then either added equally to the
neighboring cells if it is positive or subtracted if it is negative.

(a) Object at surface (b) Object fully submerged

Figure 2.3.: Water being replaced by an object. The water is shown in blue, the replaced
volume is marked red and the object’s boundaries are indicated by a brown
box.

To calculate r one may do collision queries at each grid position. The problem to
be solved is finding out if the point defined by the grid position and the corresponding
height value is inside any object or if any objects are inside the interval defined by the
grid position starting at the bottom of the simulated body of liquid and extending to
it’s surface. If the query concerning the point inside an object evaluates to “true” this

18

means there is an object at the surface which means the array b has to be updated. If the
interval query evaluates to “true” the amount of overlap has to be determined and this
will be the new value of r. Going into detail here is beyond the scope of this thesis. Any
paper or book that covers collision detection might be consulted on this issue, e.g. the
book on collision detection by Christer Ericson ([3]). To reduce the number of collision
queries one could define a bounding box around the body of liquid and use this box to
determine a set of objects which might collide with the liquid. The projection of the
bounding boxes of the objects in this set may then be used to determine for which r[i, j]
collision queries have to be made. For all other position logically follows that r is 0 and
b is “false”.
Another issue arrises when the point query is “true”. Then water cannot simply be

added or subtracted from the height value at the current position or it’s neighbors.
The vicinity of the object at the surface has to be found. This problem is similar to
finding regions in a digital image. The region of the object on the surface is defined by
a connected set of neighboring grid positions for which b is set to “true”. The direct
neighbors of this region is the vicinity that has to be modified. Again too much detail
would be beyond the thesis’ scope. One solution to region finding is so called flood filling
but other techniques might be used as well.

(a) Bucket above water (b) Bucket colliding with water (c) Bucket partially submerged

Figure 2.4.: This figure depicts the problem with certain objects and the water they
replace. A bucket falling into water is shown. In (c) there should be no
water in the bucket but the simulation will still show some water inside it
(shown in light blue).

This solution still has an unsolved problem namely that some objects are not handled
properly. E.g. a bucket which falls down straight with it’s bottom facing the surface
will seem to have non-solid walls with water magically getting inside it once the bottom
is submerged below the surface but the rest is not.

19

2.7. Liquid to object interactions
On any object in a liquid a force called buoyancy is applied. This force pushes the object
upwards toward the surface or maybe even on top of it. The magnitude of this force
on floating objects can be determined by Archimedes’ principle. It states that the force
pushing the object up is the reaction to force pushing the water away. This means it
is a reaction to the gravity affecting the object. Thus follows that the direction of this
force is the opposite of the direction of gravity and that the magnitude is the mass of the
replaced liquid times the gravitational acceleration (g ≈ 9.81 m/s2). The mass of the
replaced liquid is the volume times the density ρ and the volume at each grid position
is h2 (the size of a grid cell) times r (note: if multiple objects contribute to r at a given
position only the contribution from each object itself must be used to the determine the
buoyancy applied to it). Written in one formula the magnitude of this force at each grid
cell is is

f = r · h2 · ρ · g. (2.20)

The total force on the object is naturally the sum of the forces at all grid cells.

Figure 2.5.: Buoyancy. The force caused by each water column on an object is shown as
a red arrow. The total buoyancy is the sum of all these individual forces.

2.8. Extended implementation
With various extensions having been discussed so far it is time to look at an updated
implementation of the simulation:

1 f o r a l l i , j :
2 dr [i , j] = −r [i , j]
3 r [i , j] = 0
4 b [i , j] = f a l s e
5 endfor
6 f o r a l l o b j e c t s o c o l l i d i n g with l i qu id ’ s bounding box :
7 f = 0

20

8 f o r a l l i , j in p r o j e c t i o n o f o ’ s bounding box on l i q u i d su r f a c e :
9 b [i , j] = doPointQuery (i , j , u [i , j] , o)
10 x = doIntervalQuery (i , j , u [i , j] , bLvl , o)
11 r [i , j] += x
12 dr [i , j] += x
13 f += h∗∗2 ∗ x ∗ p ∗ g
14 endfor
15 applyBuoyancy (o , f)
16 endfor
17 di s t r ibuteReplacedWater (u , dr , b)
18
19 f o r a l l i , j :
20 du = −4 ∗ u [i , j]
21 i f i == N−1 or b [i +1, j] :
22 du += u [i , j]
23 e l s e :
24 du += u [i +1, j]
25 i f i == 0 or b [i −1, j] :
26 du += u [i , j]
27 e l s e :
28 du += u [i −1, j]
29 i f j == M−1 or b [i , j +1] :
30 du += u [i , j]
31 e l s e :
32 du += u [i , j +1]
33 i f j == 0 or b [i , j −1] :
34 du += u [i , j]
35 e l s e :
36 du += u [i , j −1]
37 f = c ∗∗2 ∗ du / h∗∗2
38 v [i , j] = s ∗ (v [i , j] + f ∗ t)
39 i f b [i , j] :
40 v [i , j] = v [i , j] ∗ sb
41 u2 [i , j] = u [i , j] + v [i , j] ∗ t
42 endfor
43 f o r a l l i , j :
44 u [i , j] = u2 [i , j]
45 endfor

New symbols added since the previous pseudo-code listing are:

• dr: array containing the change in displaced liquid compared to the previous sim-
ulation step

• r: array containing the amount of displaced liquid (has to be initialized to 0 at all

21

positions before the first simulation step)

• b: array indicating at which positions reflections should occur (indicates the pres-
ence of floating objects or objects which are entering the liquid)

• f (lines 7-15): buoyancy

• bLvl: the height of the bottom of the liquid body in world space

• x: liquid displaced by a given object

• p: the density of the liquid

• g: gravitational acceleration

• N : size of the grid in the dimension of i (“horizontal size”)

• M : size of the grid in the dimension of j (“vertical size”)

• s: scaling to achieve a (fake) damping effect

• sb: extra scaling/damping for blocked cells

With all these extension the simulation has become a lot more complicated already.
Lines 1-17 have been added to do liquid-object interactions. These lines left some details
undecided like how to do collision detection. This was done on purpose to stay within
this thesis’ scope. Lines 20-36 are an updated version of the previous implementation
which calculated du. The change was done to include reflections. There is also a change
in line 38 and lines 39-40 have been added to include damping.
While it is difficult to argue about lines 1-17 without filling in more details one might

take a closer look at lines 19-45 though. These lines do the updating of the actual
heights. One property of the for-loops in those lines is that the result at each u[i, j]
is independent of the result at all other positions (i′, j′). From that follows that lines
19-43 might be parallelized. Each thread calculates the results for a different subset of
positions (i, j). One might even try to calculate the simulation on the GPU. Problems
when doing so are that branching should be avoided (meaning the five if statements
might cause performance problems) and the values in u need to be read back to the
main memory if the code in lines 1-17 cannot be executed on the GPU as well.

2.9. Rendering
The section on related work in the first chapter already stated that the focus of this
bachelor’s thesis is more on the simulation itself than on rendering it’s results. But since
the simulation is basically useless without a visualization and that there is potential for
optimizations a short discussion is still appropriate.
The first idea one might have is to simply use bars to represent the surface. For

each value stored in the grid a bar is used with a height depending on the value itself.

22

The base area of the bars is chosen such that all bars have the same base area and the
entire surface covered by the grid is covered with bars. The bars then extend from the
ground to the surface of the liquid. Unfortunately one would need large grids to achieve
a satisfying results and the resulting surface normals, which are required for calculating
optical effects like reflection and refraction, would still be basically useless.
A better approach is to derive a triangle mesh representing the surface directly. For-

tunately this is quite easy. As basis one simply defines a vertex for each value in the
grid. The vertex’ x and z values are determined by the position in the grid and y value is
the height stored in the grid. Each of these vertices (aside from the ones on the border)
has to be connect with all his direct neighbors including the diagonal neighbors. As an
optimization the heights of the grid could be stored and read directly in the triangle
mesh. This means that no dedicated array u is needed. This triangle mesh can then
be easily used for all further processing required for rendering. In modern games this
usually means deriving normals from the triangle faces, transforming the vertices from
object- to world- to screen-coordinates using matrix multiplications, rasterize the trian-
gles and execute fragment shader programs to determine the color of each pixel covered
by the triangles. These shader programs then can produce effects like refraction and
reflection. But this entire process is beyond the scope of this thesis as it is a topic of
it’s own. Works which give more details on this are already mentioned in the section on
related work.

2.10. Liquids other than water
So far the word liquid could have been used interchangeably with the word water. Given
the importance of water in our lives it is not surprising that water is the most interesting
liquid to talk about. But games may also include scenarios in which other liquids like
slime or lava play an important role. Thus it is interesting to discuss what liquid-specific
parameters there are in the simulation, how they affect the results and consequently how
different parameters might be used to simulate different liquids.
The liquid-specific parameters are:

• p: the density of the liquid which in turn affects the buoyancy

• c: the speed with which waves travel

• s: the damping

These parameters may be used to adjust the perceived “viscosity” of the liquid. If p is
sufficiently large objects will sink slower and less far into the liquid which in turn causes
smaller waves. The spreading of the waves may be slowed down by using low values
for c and s. By making a liquid seem more or less viscose and using different fragment
shaders to achieve different colors one may simulate liquids that do not necessarily feel
and look like water.

23

2.11. Limitations
There are basically two kinds of limitations. Some limitations follow from the model
itself others from the proposed implementation. These will be discussed here in addition
to some extensions of the simulation Matthias Müller-Fischer proposes but which have
not been included here.

2.11.1. Model
In the beginning of this chapter the model which was proposed included the idea that
the water surface can be represented by a continuous height function at any given point
in time. While the model might seem to suffice for all water surfaces at the first glance,
there are two major phenomena which cannot be represented in this model. The first
one is a breaking wave. Under certain circumstances the top of a wave might tip over
such that there is an overlap of parts of the surface when viewed from above. A function
which assigns height values to points on a plane simply is not expressive enough to
model this phenomenon. In real life this occurs usually when ocean waves arrive at a
beach and is known by most people in contexts such as surfing or tsunamis. The other
phenomenon are splashes of liquid which become disconnected from the rest. E.g. the
water in a swimming pool might splash over the edge of said pool and thus a portion of
water becomes disconnected from the rest of the water. Due to the assumed continuity
of the surface in the model this cannot be simulated by this model either.

2.11.2. Implementation
The proposed implementation basically uses arrays to represent values on a fixed, evenly
spaced grid. The even spacing is used to optimize the simulation by simplifying the
calculation of the force f . The spatial derivatives could not be calculated so easily if the
points in the grid were not evenly spaced. As a result the size of the simulated liquid
surface is also fixed. This becomes a problem when trying to simulate liquids arriving at
sloped surfaces, e.g. water waves arriving at a beach. What happens is that some water
splashes onto the beach and then flows back leaving (wet) sand behind. This means
that the border of water surface changes over time. From that observation follows that
this implementation is suited for lake- or pool-like bodies of water where the water is
confined inside a specific space. Another implementation issue is that information may
propagate only one cell at a time. This is a result of only using the direct neighbors to
determine the force a each point of the grid. In practice this means that the equation
c < h

t must be true at all times. As a reminder c is the speed with which waves travel, h
is the grid spacing and t is the time that has passed between the old state of the surface
and the new one to be calculated. While this condition might be relaxed by taking
more neighbors into account when updating the heights on the grid one has to consider
that for each additional cell that information may travel, and therefore increasing the
maximum allowed value for c, four additional neighbors have to be taken into account.
This means that the cost (additional neighbors considered and the resulting complexity

24

of the expression) grows faster than the gain (number of cells information may travel).

2.11.3. Other extensions
For the sake of completeness other extensions proposed by Müller-Fischer are mentioned
here even though they could not be properly included into this thesis due to the lack of
a video of his lecture at the Game Developers Conference 2008.
He recognized the problem that a fixed surface sizes poses in terms of scenarios the

simulation is applicable to, too. His idea for a solution was to use a hybrid solution which
uses not only height fields but also other techniques. E.g. a part of the water could be
simulated with height fields and surrounding this simulation procedurally generated
water is placed. A viable solution though one has to remember that this requires two
different implementations. Both of which might be quite complex or, to reduce the
complexity of one of the implementations, which might result in parts of liquid being
simulated with fewer features like no object-liquid interactions. He even showed a demo
of a pool of water from which one side gets removed and consequently the water flows out
of the pool. Even though there is a slide which indicates his approach (a ghost column
at the border with a memory of the height of the liquid) it is basically impossible to
deduce his entire approach from one slide alone without knowing what he said when
showing the slide.
The model and implementation as discussed in this thesis might be able to handle

horizontal movement of objects in the liquid but this is an extension which was not
directly considered when deriving the equations used for the simulation from the mem-
brane model. Thus Müller-Fischer proposes to use a more realistic physical model like
the shallow water equations. But the slides indicate that even at the lecture no details
were discussed.
Another proposed idea to improve the realism is by adding specific phenomena using

specialized implementations. Criteria to identify the occurrence of such special case
have to be added and if appropriate specialized simulations have to be triggered. This
is similar to the approach used for liquid-object interactions when using procedurally
generated liquid surfaces. This idea is given as an example in the form of breaking
waves. The specific idea in this case is to identify steep wave fronts and add a special
polygon mesh just for simulating the breaking wave. Adding particles is mentioned as
well. By using special implementations for special cases the possibilities are virtually
endless but so is the required implementation effort and the potential hit on performance.

25

3. Evaluation

This chapter will cover the results of implementing the algorithms discussed in the
previous chapter. At first the setup used for testing will be described in detail. This is
then followed by analyses of the performance and of the realism of the simulation.

3.1. Test Setup
An application implementing the algorithms from chapter 2 was created. Aside from
simulating the liquid surface it was also able to visualize the results. The application
was build using C++, boost ([8]), SDL ([18]), SDL_ttf ([11]) and OpenGL ([14]). Table
3.1 shows the test system used both for developing and benchmarking. The application
allowed to vary various parameters like the grid sizes, the wave speed or the liquid density.
Additionally crates could be thrown into the liquid to test liquid-object interactions. The
liquid pool and the crates were always axis-aligned simplifying the implementation of
the interactions by making collision detection, projection of the crates onto the liquid
surface and finding the vicinity of the crates easy. This also means that in a real game
interactions could be more costly than in this application. The simulation of the liquid
surface (lines 19-45 of the extended pseudo-code in chapter 2) could be computed using
two threads each thread computing half of the new heights. The visualization was quite
simple using a transparent, textured triangle mesh derived from the heights without any
of the more advanced effects mentioned in the rendering section.

Component Component name and model
CPU 2.4GHz Intel Core 2 Duo
RAM 2x 2 GB 1066MHz DDR3 SDRAM
GPU NVIDIA GeForce 9600M GT (256 MB shared memory)
HDD 250 GB SATA (5400 rpm)

Operating system Mac OS X 10.6.4
C++ Compiler GCC v4.2.1

Table 3.1.: Test system used for development and benchmarking

3.2. Performance and memory consumption
The performance was measured by recording the times required for computing liquid-
object interactions and for computing the liquid surface simulation for 100 consecutive

26

frames. These times were then averaged. The appendix contains detailed tables with
the results. An excerpt is shown in table 3.2. It shows the times needed for computing
liquid-object interactions, the time needed for liquid surface simulation and the sum of
both. Time needed for other things like rendering is not included. The dependence of
the computation times on the number of threads and the grid size is shown.

no. of grid time for time for total
threads size interactions liquid simulation time

1

128x128 0.10 ms 0.91 ms 1.01 ms
256x256 0.31 ms 2.59 ms 2.90 ms
512x512 1.22 ms 10.06 ms 11.28 ms

1024x1024 5.58 ms 40.70 ms 46.28 ms

2

128x128 0.16 ms 0.32 ms 0.48 ms
256x256 0.32 ms 1.51 ms 1.83 ms
512x512 1.23 ms 5.87 ms 7.10 ms

1024x1024 5.58 ms 22.98 ms 28.56 ms

Table 3.2.: Simulation performance when 30 objects interact with a liquid

With the limit of 16ms to 33ms per frame in mind one can clearly see that it is
out of the question to use grids larger than 512x512. Anything up to this limit is fine
though. Without multithreading the use of a 512x512 grid is questionable but still
possible depending on the complexity of the rest the application. When using just one
thread on average 89% of the simulation time was spent on the surface simulation and
consequently 11% was spent on the liquid-object interaction. The relative time spend on
the surface simulation is reduced to 78% when using a second thread. Multithreading
reduced the time spent on computing the new heights by 48% on average showing that
the simulation can really easily be parallelized. For most games 30 objects interacting
with the liquid at the same time is quite a large number and most of the time is spent
on simulating the surface anyway. So even with more complex collision detection the
simulation would probably still be fast enough to use in a real game. The memory
consumed by the five floating point number arrays and the one boolean array necessary
for the simulation can easily computed as up to 21 MB for a 1024x1024 grid considering
that single precision floating point numbers were used. For a modern computer this
might pose no problem but for an Xbox 360 or PlayStation 3 this is a significant amount
of the 512 MB memory those consoles have. This is especially bad for the Xbox 360
because games running on this console can not rely on the presence of a hard disk for
swapping. The memory consumption of smaller grids is no issue though. For a 512x512
grid the memory requirement is reduced to 5.25 MB already not accounting for possible
optimizations.

27

3.3. Realism
The simulation worked mostly as expected. The various parameters like wave speed
had the effect one expected, meaning that behavior of the liquid could be adjusted in
such a way that it does not necessarily looked like water. Simulating waves with a low
amplitude worked quite well including reflections. While already looking nice with a
grid size of 128x128 for a surface covering nearly the whole screen the look could still
be improved by increasing the grid size. But unfortunately waves with high amplitudes
looked unnatural due to being too smooth. They lacked the sharp tops one expects from
such waves. Object interaction worked as expected as well. The interactions looked
nicer than what most games offer. This is especially true in comparison with games
using texturing tricks instead of modifying triangle meshes when applying the effects
to liquid surfaces. The object-to-liquid interaction did not look convincing in every
case though. Since the velocity of objects colliding with the surface is not considering
when spreading the liquid around to create waves, the generated waves were too small.
Another problem was dragging objects, which are far below the liquid surface, around.
They affected the surface in just the same way as floating objects being dragged around.
One would expect that the effect of the replaced liquid on the surface is dependent on
the depth of the object inside the liquid.
Stability was a major concern. In games the frame rate usually determines the time

steps used for any kind of simulation. With 30 frames per second as a lower limit this
means that the time steps could be up to 33ms. For 1024x1024 grids this time step was
not small enough to allow for sufficiently fast waves for simulating water. This limitation
(the limit on the wave speed because information can only travel on grid cell at a time)
was discussed in chapter 2. In addition to that problem numerical explosions occurred
sometimes. This means that at some grid cells the height become unrealistically high
or low causing visible spikes on the surface. These artifacts appeared more often with
larger grids or when many objects interacted with the surface in close proximity to each
other or close proximity to borders.
Figures 3.1 and 3.2 show screenshots of the simulation in action. The look of liquid

surface could easily be improved by adding better rendering with surface normals inter-
polated over the mesh instead of using one fixed normal per triangle and adding effects
like reflection and refraction.

28

(a) 128x128 grid

(b) 256x256 grid

Figure 3.1.: Simulation results. Starting with a pool of quiet water waves have been
caused by adding a sufficiently large pulse near the entrance to the inner
section. The waves can be seen to spread beyond obstacles and being re-
flected by the borders on the left side.

29

(a) The crates have just been dropped into the water

(b) Situation after a few seconds

Figure 3.2.: Further simulation results. Two crates made of wood and metal have been
thrown into the water. The insufficient wave amplitudes can be seen. After
a few seconds the waves have dissipated and the lighter wooden crate has
risen back to the surface and floats on the water due to buoyancy.

30

4. Conclusion

This chapter concludes this thesis by discussing points to improve on in future works
and summarizing the work done in this thesis.

4.1. Suggestions for future works
Obvious points one could work at are the limitations discussed throughout this thesis.
Stability is an issue which not only puts limitations on the simulation but also requires
careful tuning of parameters to avoid artifacts, e.g. the spikes mentioned in the eval-
uation. Different stability issues could be solved in different ways. The limit on wave
speed could be relaxed by taking more than just the direct neighbors into account when
deriving the force acting on each grid cell. To solve the issue with the spikes one would
probably need a better physical model like the shallow water equations or even the full
Navier-Stokes equation. A better model would also help making waves with high ampli-
tudes looks more natural. Additionally it would allow taking more forces into account
like wind or real damping improving the realism further. Thus other physical models
are an interesting direction for future works.
Another big limitation is that only “water in tank”-like liquids can be simulated. This

comes mainly from the fact that the simulation is based on a grid. While one could try to
work without assuming that the grid cells are evenly spaced this would basically turn the
simulation into a particle-based one. While interesting in itself it does not make sense
to use this thesis as a basis for a particle-based simulation. As Matthias Müller-Fischer
already mentioned one could try to add special cases like breaking waves or a change in
the size of the surface (e.g. waves arriving at a beach) by identifying when they occur
and using specialized implementations for their simulation.
To improve performance and memory consumption (five floating-point number arrays)

one could look into using multiple small grids instead of one large grid. E.g. two 128x128
grids could be used with one covering the entire liquid surface and the other covering
just a small fraction of the surface surrounding the player increasing the resolution and
thus realism near the player. The size of the surface covered by grid surrounding the
player would not need to change, only it’s location would have to be dynamic. This
means that a future work could look into how to efficiently find out which parts of the
coarser grid do not need to be updated because of the finder grid around the player. Also
a problem to be solved in this situation is how to efficiently transfer heights from one
grid to another considering that one grid is moving around. This technique is sometimes
referred to as “level of detail” (LOD) or sleeping and is already used in games for other
problems most notably when rendering graphics.

31

Aside from full fluid dynamics simulation little has been done to simulate liquids
other than water or even interactions between multiple liquids. While this might seem
irrelevant for games, game developers adapt to their given possibilities, e.g. they adapted
to the Nintendo DS and the Nintendo Wii which offered new control schemes. So given
the ability to simulate liquid interactions an innovative game developer might came up
with new interesting gameplay ideas.

4.2. Summary
This thesis has shown that there are multiple ways to simulate liquid surfaces like proce-
durally generated surfaces based on simply evaluating functions at the points covered by
said surface. Another approach is using particles. The movement of the particles based
on some model could be simulated and from their positions a surface could be derived.
One could even go so far and try simulating full fluid dynamics using linear equations
systems. In this thesis yet another approach was used namely height fields. Heights were
stored on a grid and their change over time was simulated. Each of these approaches has
different advantages and disadvantages. The most realistic simulations based on fluid
dynamics or a large number of particles are usually slow. When using the seemingly fast
and simple procedurally generated liquids it is difficult to do liquid-object interactions.
Height fields are fast, simple and allow to more or less easily include interactions but
suffer from stability issues.
The height fields used in this thesis were based on the simple physical model of a

membrane. This model was used to derive a surface simulation which can be imple-
mented with just a few lines of code (without considering interactions). This simplicity
is one of the reasons for the high performance. It also means that adding interactions
with objects and geometry inside the “water tank” (blocked grid cells) did not make the
simulation overly complicated and thus overly difficult to implement or slow to compute.
Yet that simulation still suffers from limitations. Aside from the stability issues like lim-
ited wave speeds or numerical problems there are also physical phenomena which can
not be simulated with the model used in this thesis. The simulation is basically limited
to ponds, lakes or pools of relatively quiet liquid with only small waves.
Various hints have been given on how future works might make height fields more

usable. It has been suggested to consider more neighboring cells when calculating new
heights, use a better physical model, use specialized implementations for phenomena
which otherwise could not be simulated and to use a simulation which adapts to the
movement of the player. Also interactions between liquids have been proposed to expand
the possibilities game developers have.

32

Appendices

A. Benchmark results

These are the benchmark results as noted in the chapter Evaluation. Details on how
they were determined can be found in said chapter. The results are shown in two
tables. The first table shows the results when using just one thread while the second
table contains the results of using two threads. Each table shows the time needed for
computing liquid-object interactions, the time needed for liquid surface simulation and
the sum of both. These times only include the implementation of the extended pseudo-
code listed in chapter 2. Time needed for other things like rendering is not included.
The dependence of the computation times on the number of objects and the grid size is
shown.

no. of grid time for time for total
objects size interactions liquid simulation time

0

128x128 0.06 ms 0.49 ms 0.55 ms
256x256 0.21 ms 2.39 ms 2.60 ms
512x512 0.83 ms 9.79 ms 10.62 ms

1024x1024 4.00 ms 39.48 ms 43.48 ms

30

128x128 0.10 ms 0.91 ms 1.01 ms
256x256 0.31 ms 2.59 ms 2.90 ms
512x512 1.22 ms 10.06 ms 11.28 ms

1024x1024 5.58 ms 40.70 ms 46.28 ms

60

128x128 0.15 ms 0.54 ms 0.69 ms
256x256 0.42 ms 2.65 ms 3.07 ms
512x512 1.63 ms 10.69 ms 12.32 ms

1024x1024 7.04 ms 42.30 ms 49.34 ms

90

128x128 0.21 ms 0.63 ms 0.84 ms
256x256 0.54 ms 2.83 ms 3.37 ms
512x512 2.03 ms 10.65 ms 12.68 ms

1024x1024 8.59 ms 42.48 ms 51.07 ms

Table A.1.: Single-threaded benchmark results

34

no. of grid time for time for total
objects size interactions liquid simulation time

0

128x128 0.06 ms 0.35 ms 0.41 ms
256x256 0.21 ms 1.33 ms 1.54 ms
512x512 0.86 ms 5.67 ms 6.53 ms

1024x1024 3.98 ms 21.55 ms 25.53 ms

30

128x128 0.16 ms 0.32 ms 0.48 ms
256x256 0.32 ms 1.51 ms 1.83 ms
512x512 1.23 ms 5.87 ms 7.10 ms

1024x1024 5.58 ms 22.98 ms 28.56 ms

60

128x128 0.14 ms 0.34 ms 0.48 ms
256x256 0.43 ms 1.46 ms 1.89 ms
512x512 1.66 ms 5.82 ms 7.48 ms

1024x1024 7.05 ms 23.58 ms 30.63 ms

90

128x128 0.17 ms 0.68 ms 0.85 ms
256x256 0.55 ms 1.45 ms 2.00 ms
512x512 2.06 ms 6.02 ms 8.08 ms

1024x1024 8.63 ms 23.42 ms 32.05 ms

Table A.2.: Multi-threaded benchmark results

35

Bibliography

[1] V. Belyaev. Real-time simulation of water surface. In International Conference
Graphicon, 2003.

[2] R. Bridson. Fluid Simulation for Computer Graphics. A K Peters, Ltd, 2008.

[3] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann, 2004.

[4] Association for Computing Machinery: Fluid Simulation. WWW document,
09.08.2010. (URL: http://portal.acm.org/citation.cfm?id=1281681).

[5] D. Meschede. Gerthsen Physik, page 115. Springer, 22th edition, 2004.

[6] M. Müller-Fischer R. Bridson. Fluid simulation: Siggraph 2007 course notes. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, pages 1–81, New York, NY,
USA, 2007. ACM.

[7] J. Stam. Real-time fluid dynamics for games. In Proceedings of the Game Developer
Conference, March 2003.

[8] R. Rivera: Boost C++ Libraries. WWW document, 08.08.2010. (URL:
http://www.boost.org/).

[9] NVIDIA Corporation: GPU Gems - Chapter 34. GPU Flow-
Control Idioms. WWW document, 08.08.2010. (URL:
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter34.html).

[10] NVIDIA Corporation: GPU Gems 3 - Chapter 30. Real-Time Simula-
tion and Rendering of 3D Fluids. WWW document, 08.08.2010. (URL:
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch30.html).

[11] S. Lantinga: http://www.libsdl.org/projects/SDL_ttf/. WWW document,
08.08.2010. (URL: http://www.libsdl.org/projects/SDL_ttf/).

[12] M. Müller-Fischer: Invited Talks / Courses. WWW document, 08.08.2010. (URL:
http://matthiasmueller.info/talks/talks.htm).

[13] Autodesk Inc.: Maya 3D Animation, Visual Effects, and Composit-
ing Software - Autodesk. WWW document, 08.08.2010. (URL:
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13577897).

[14] Khronos Group: OpenGL - The Industry Standard for High Performance Graphics.
WWW document, 08.08.2010. (URL: http://www.opengl.org/).

36

[15] Intel Corporation: Real-Time Deep Ocean Simulation on Multi-Threaded Ar-
chitectures - Intel R© Software Network. WWW document, 08.08.2010. (URL:
http://software.intel.com/en-us/articles/real-time-deep-ocean-simulation-on-
multi-threaded-architectures/).

[16] Intel Corporation: Real-Time Parametric Shallow Wave Simulation - Intel R© Soft-
ware Network. WWW document, 08.08.2010. (URL: http://software.intel.com/en-
us/articles/real-time-parametric-shallow-wave-simulation/).

[17] R. Bridson: Robert Bridson. WWW document, 08.08.2010. (URL:
http://www.cs.ubc.ca/ rbridson/).

[18] S. Lantinga: Simple DirectMedia Layer. WWW document, 08.08.2010. (URL:
http://www.libsdl.org/).

[19] R. Truelsen. Real-time Shallow Water Simulation and Environment Mapping and
Clouds, 2007.

37

